
A CROSS LAYER PROTOCOL FOR SERVICE ACCESS IN MOBILE AD HOC

NETWORKS

by

Mesut Ali Ergin

B.S. in Control and Computer Engineering, İstanbul Technical University, 1999

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

in

Computer Engineering

Boğaziçi University

2003

ii

A CROSS LAYER PROTOCOL FOR SERVICE ACCESS IN MOBILE AD HOC

NETWORKS

APPROVED BY:

Assoc. Prof. Cem Ersoy

(Thesis Supervisor)

Assoc. Prof. Şebnem Baydere

Prof. M. Ufuk Çağlayan

DATE OF APPROVAL: 27.02.2003

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Cem Ersoy for putting his

trust in me throughout this study. Dr. Ersoy gave invaluable advices and helped more

than one might think of.

I am very appreciative of working with Şebnem Baydere as a research assistant

at the Department of Computer Engineering, Yeditepe University. I owe a lot to

her for the academic support she supplied. We would have sure been a part of a

better research community, if there had been more people like Dr. Baydere, providing

countless opportunities to young researchers.

I present my sincere thanks to Yeditepe University for employing me to take

part in SeMA project which was partially supported by The Scientific and Technical

Research Council of Turkey (TUBITAK) under grant 101E037/EEEAG-AY-41. I am

indebted to all members of The Network Laboratory at Yeditepe University.

There are no words to describe the love, support and patience my friends gave

me during this thesis study and beyond. Being afraid of forgetting even one of those

great friends, I would never dare to recognize their names here. I believe each of them

knows how much I should thank them for making my life so enjoyable.

Without any doubt, members of my family made a lot of sacrifices to make sure

I had a perfect study. Actually, nothing was as perfect as them.

iv

ABSTRACT

A CROSS LAYER PROTOCOL FOR SERVICE ACCESS IN

MOBILE AD HOC NETWORKS

Mobile Ad Hoc Networks (MANET) are composed of moving wireless commu-

nication capable computers usually deployed for the purpose of temporal information

exchange in cases where coverage of infrastructured networks is not available. Consid-

ering the fragile environment of MANET, simple and application aware communication

approaches must be preferred in favor of complex and general purpose cascaded stack

of protocols. These approaches must serve the applications need for access to ser-

vices available on other hosts, addressing the announcement, discovery, binding and

utilization of those services.

In this thesis, dynamic access to named non-interactive services in ad hoc net-

works is studied and a simple cross layer protocol is designed for service discovery

and routing. The algorithms of the proposed protocol are implemented in a wireless

network simulation software, GloMoSim, for the purpose of algorithm verification and

performance evaluation. Some representative applications and scenarios designed out

of these applications using the simulation software extensions for the new protocol are

also implemented. The results from these experiments have shown that a service aware

slim protocol stack implementation is possible for non-interactive service access in mo-

bile ad hoc networks. The advantages of having service awareness in the network layer

are also emphasized.

Content of the thesis includes the necessary motivation and background for

MANET, proposed communication infrastructure, designed mechanisms, simulation

implementation details, experiment and results.

v

ÖZET

GEZGİN TASARSIZ AĞLARDA HİZMETLERE ERİŞİM

İÇİN ÇAPRAZ KATMANLI BİR AĞ PROTOKOLÜ

Gezgin tasarsız ağlar, önceden planlanmış bir telsiz ağ altyapısının kapsama

alanında olmaya gerek bırakmaksızın, telsiz iletişim yapma yeteneği olan hareketli bil-

gisayarların birbirleri ile geçici süreli bilgi değişimi yapmalarına olanak verir. Bu ağ

yapısının kırılgan ortamı, basit ve uygulamalardan haberdar iletişim yaklaşımlarının,

karmaşık ve genel amaçlı protokol yığınlarına tercih edilmesini gerektirmektedir. Bu

yaklaşımlar, uygulamaların sundukları hizmetleri duyurmalarına, ağ üzerindeki diğer

hizmetleri keşvetmelerine, bağlanmalarına ve kullanmalarına olanak sağlamalıdır.

Bu tezde etkileşimsiz isimli hizmetlere devingen erişim ile ilgilenilmiş, hizmet keşfi

ve yönlendirme sağlamayı amaçlayan basit bir çapraz katmanlı protokol tasarlanmıştır.

Önerilen protokoldeki algoritmalar, doğrulama ve başarım ölçümü amacıyla GloMoSim

telsiz ağ benzetim yazılımına eklenerek gerçeklenmiştir. Gerçeklenen bu benzetim

yazılımı kullanılarak, temsili uygulamalar ve bu uygulamalardan türetilmiş senaryolar

oluşturulmuştur. Yapılan bu deneylerden edinilen sonuçlar, etkileşimsiz isimli hizmet-

lere devingen erişim için hizmetlerden haberdar bir basit protokol yığını kullanımının

mümkün olduğunu göstermiştir. Ayrıca ağ katmanı seviyesinde, hizmetlerden haberdar

olmanın getirileri vurgulanmıştır.

Tezin içeriğinde gerekli hazırlık bilgileri, önerilen iletişim altyapısı, tasarlanan

düzenekler, benzetim yazılımı ayrıntıları, deneyler ve sonuçlar bulunmaktadır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . xiii

LIST OF SYMBOLS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

1.1. Problem Definition . 2

1.1.1. Routing Related Problems . 3

1.1.2. Application Related Problems 5

1.2. Motivation . 6

1.3. Contribution . 7

1.4. Organization of the Thesis . 7

2. BACKGROUND INFORMATION . 9

2.1. Definitions . 9

2.1.1. Ad Hoc Network . 9

2.1.2. Other Definitions . 10

2.2. Medium Access Layer . 12

2.2.1. Fundamental Medium Access Problem 12

2.2.2. IEEE 802.11 MAC Protocol . 14

2.3. Mobility Models . 17

2.3.1. Independent Node Mobility Models 17

2.3.2. Group Mobility Models . 19

3. STATE OF THE ART IN AD HOC NETWORKS 21

3.1. Routing . 21

3.1.1. Proactive Routing Protocols . 22

3.1.2. Reactive Routing Protocols . 24

3.1.3. Hybrid Routing Protocols . 26

3.2. Service Discovery . 27

vii

3.2.1. Service Location Protocol . 28

3.2.2. JINI . 29

3.2.3. Salutation . 29

3.2.4. Universal Plug and Play . 30

3.2.5. Bluetooth Service Discovery Protocol 31

3.2.6. Secure Service Discovery Service 31

3.2.7. Intentional Naming System . 31

4. PROPOSED PROTOCOL . 33

4.1. Overview . 33

4.2. Modelling of Protocol Elements . 37

4.2.1. Modelling Hosts . 37

4.2.2. Modelling Services . 40

4.3. Packet Structure . 42

4.4. Components . 43

4.4.1. Session Manager . 44

4.4.1.1. Announcing Availability of Services 44

4.4.1.2. Session Table . 44

4.4.1.3. Maintaining an Inbound Session 45

4.4.1.4. Maintaining an Outbound Session 46

4.4.2. Service Agent . 47

4.4.2.1. Service Table . 47

4.4.2.2. Handling Arriving Announcements 48

4.4.2.3. Handling Departing Announcements 49

4.4.2.4. Fetching and Discovering Services 51

4.4.3. Routing Agent . 53

4.4.3.1. Routing Strategy . 54

4.4.3.2. Route Loss and Healing 56

4.4.4. Communication Agent . 57

4.5. Illustrative Examples . 59

5. IMPLEMENTATION OF SIMULATION . 64

5.1. Structure of the GloMoSim . 65

5.1.1. Organization of Directories . 67

viii

5.1.2. Representation of Layers . 68

5.1.3. Messages and Events . 68

5.1.4. Operation of Network Layer . 72

5.1.5. Addition of a New Protocol . 75

5.2. Implementation of Proposed Protocol Simulation 76

5.2.1. XML Processing . 77

5.2.2. Communication Agent . 78

5.2.3. Routing and Service Agents . 79

5.2.4. Session Manager . 82

5.3. Implemented Applications . 85

5.3.1. Printing Application . 85

5.3.2. CBR Class Applications . 85

5.3.3. VBR Class Applications . 86

5.4. Use of Simulator . 87

6. EXPERIMENTS AND RESULTS . 90

6.1. Motivation . 90

6.2. Parameters . 90

6.2.1. System Parameters . 90

6.2.2. Workload Parameters . 91

6.3. Performance Metrics . 91

6.4. Experiments . 93

6.5. Results . 98

6.5.1. Service Announcements Recorded 98

6.5.2. Application Oriented Performance 99

6.5.3. Service Discovery Latency . 102

6.5.4. Effect of Service Announcement Repetitions 103

6.5.5. Effect of Average Mobile Speed 105

6.5.6. Routing Agent Performance . 106

7. CONCLUSIONS AND FUTURE WORK . 109

APPENDIX A: SAMPLE HOST XML SCHEMA DOCUMENT 111

APPENDIX B: SAMPLE APPLICATION CONFIGURATION FILE 112

REFERENCES . 114

ix

LIST OF FIGURES

Figure 2.1. Hidden and exposed terminal problems 13

Figure 2.2. An infrastructured and ad hoc wireless network configuration . . . 15

Figure 2.3. IEEE 802.11 MAC basic access method 16

Figure 3.1. A sample service URL and its associated template for SLP 29

Figure 4.1. An overall look to the SeMA protocol stack 36

Figure 4.2. Main and first level child elements of host XML documents 38

Figure 4.3. XML definition of a sample mobile host 39

Figure 4.4. Main and first level child elements of service XML documents . . . 40

Figure 4.5. XML definition of a sample printer as a service instance 41

Figure 4.6. XML definition of a sample web page as a service instance 41

Figure 4.7. SeMA packet structure . 42

Figure 4.8. Service table with a sample entry 47

Figure 4.9. The arriving service announcement handling algorithm 50

Figure 4.10. The departing service announcement handling algorithm 51

Figure 4.11. The steps performed to find a suitable service by the service agent 54

x

Figure 4.12. Session cache with sample entries 56

Figure 4.13. The steps performed to route a SeMA packet 58

Figure 4.14. Service announcement procedure in a sample network 60

Figure 4.15. Service tables of hosts after the announcement 61

Figure 4.16. Service lookup procedure in a sample network 62

Figure 4.17. Service table of Node 6 after lookup reply procedure 62

Figure 4.18. SeMA packet routing procedure in a sample network 63

Figure 5.1. GloMoSim layers and implemented SeMA stack 65

Figure 5.2. An example to API calls between layers in GloMoSim 66

Figure 5.3. An excerpt from GlomoNode structure definition 68

Figure 5.4. An excerpt from GlomoMac structure definition 69

Figure 5.5. Scheduling a self-timer event within the MAC layer 70

Figure 5.6. Handling a timer event within the MAC layer 71

Figure 5.7. Preparing and sending a MAC frame to radio layer 72

Figure 5.8. Handling a MAC frame from radio interface 73

Figure 5.9. GloMoSim network layer and its API to neighboring layers 74

xi

Figure 5.10. GloMoSim network layer operation 75

Figure 5.11. A typical host XML instance and its encoded version 78

Figure 5.12. The trap code intercepting SeMA packets from IP payloads 79

Figure 5.13. Definition of the protocol main data structure 81

Figure 5.14. Definition of the protocol packet 82

Figure 5.15. An excerpt from session table definition 84

Figure 5.16. An excerpt from a sample config.in file 88

Figure 6.1. Simulation terrain dimensions and placement cells 96

Figure 6.2. Total number of service instances recorded under light application

scenario . 98

Figure 6.3. Total number of recorded service instances under heavy application

scenario . 100

Figure 6.4. Average end-to-end delay for printing applications of heavy appli-

cation scenario . 101

Figure 6.5. Number of completed printing sessions for heavy application scenario101

Figure 6.6. Total number of link breaks as services announced more frequently 103

Figure 6.7. Packet delivery ratio in the network as services announced more

frequently . 104

xii

Figure 6.8. Total number of service instances recorded as services announced

more frequently . 105

Figure 6.9. Total number of link breaks as average mobile speed changes . . . 106

Figure 6.10. Total number of service instances recorded as average mobile speed

changes . 107

xiii

LIST OF TABLES

Table 3.1. Classification of ad hoc networking research in year 2001 22

Table 4.1. SeMA packet types . 43

Table 4.2. Important fields of a session table entry 45

Table 5.1. GloMosim directory structure . 67

Table 5.2. Results of different XML compression or encoding methods 77

Table 5.3. Non-packet messages for protocol components 80

Table 5.4. Routing and Service Agent statistics variables 83

Table 6.1. Fixed parameters of the simulations 94

Table 6.2. Distribution of mobile users and their speeds 95

Table 6.3. Application scenarios used in simulations 97

Table 6.4. Percentage of services discovered via lookup and average discovery

latencies for heavy application scenario 102

Table 6.5. Packet delivery ratios resulted from DSR and SeMA routing 108

xiv

LIST OF SYMBOLS/ABBREVIATIONS

ABR Associativity Based Routing

ACK Acknowledgement

AODV Ad Hoc On-demand Distance Vector Routing

API Application Programming Interface

CBR Constant Bit Rate

CEDAR Core-Extraction Distributed Ad Hoc Routing

CGSR Clusterhead Gateway Switch Routing

CSMA Carrier Sense Multiple Access

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CTS Clear To Send

DA Directory Agent

DBF Distributed Bellman-Ford

DCF Distributed Coordination Function

DDR Distributed Dynamic Routing

DHCP Dynamic Host Configuration Protocol

DIFS DCF Inter Frame Space

DSDV Destination Sequenced Distance Vector Routing

DSR Dynamic Source Routing

DSR Domain Space Resolver

DSSS Direct Sequence Spread Spectrum

ETSI European Telecommunications Standards Institute

FAMA Floor Acquisition Multiple Access

FIFO First In First Out

FSR Fisheye State Routing

FTP File Transfer Protocol

GloMoSim Global Mobile Information Systems Simulation

GPRS General Packet Radio Service

GSR Global State Routing

HSR Hierarchical State Routing

xv

HTTP HyperText Transfer Protocol

IANA Internet Assigned Numbers Authority

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

INR Intentional Name Resolver

INS Intentional Naming System

IP Internet Protocol

ISM Industry Science and Medicine

JVM Java Virtual Machine

LAR Location Aided Routing

MAC Medium Access Control

MACA Medium Access with Collision Avoidance

MANET Mobile Ad Hoc Network

MPEG Moving Pictures Expert Group

MPR Multi Point Relay

OLSR Optimized Link State Routing

OSI Open System Interconnection

OSPF Open Shortest Path First

PCF Point Coordination Function

PDA Personal Digital Assistant

PDR Packet Delivery Ratio

PDU Protocol Data Unit

QoS Quality of Service

RFC Request For Comments

RPGM Reference Group Mobility Model

RTS Request To Send

SA Service Agent

SDP Service Discovery Protocol

SIFS Short Inter Frame Space

SLM Salutation Manager

SLP Service Location Protocol

xvi

SSDP Simple Service Discovery Protocol

SSDS Secure Service Discovery Service

SSR Signal Stability-Based Adaptive Routing

TCP/IP Transmission Control Protocol/Internet Protocol

TORA Temporally Ordered Routing Algorithm

TTL Time To Live

UA User Agent

UDP User Datagram Protocol

UPnP Universal Plug and Play

VAD Voice Activity Detection

VBR Variable Bit Rate

VoSeMA Voice Over SeMA

WAP Wireless Access Point

WLAN Wireless Local Area Network

WRP Wireless Routing Protocol

XML Extensible Markup Language

XSD XML Schema Document

ZHLS Zone-Based Hierarchical Link State Routing

ZRP Zone Routing Protocol

1

1. INTRODUCTION

Increasing use of small and mobile computing devices, such as personal digital

assistants (PDA) and cellular phones, imposes the need for much simpler approaches to

communication methods. This is because wireless communication bandwidth, available

power (both for computing and wireless communication) and other interface devices

do not resemble their wired and fixed world counterparts, such as desktop computers.

With the introduction of mobility into communication, static configuration for any

resource on the network becomes costly and sometimes impossible.

Ad hoc networks have started to appear in computer communications world as

a result of the temporal need for ‘on-the-fly’ data exchange among those computing

devices equipped with wireless communication hardware. In this sense, ad hoc networks

differ from other wireless networks such as cellular networks, satellite networks or even

wireless local area networks (WLANs). An ad hoc network is formed without any

external aid to construct an infrastructure and may require multiple hops to connect

some of the hosts in the network. Apart from the ad hoc nature of the communication,

there are three major key issues that characterizes ad hoc networks. They are varying

wireless link connectivity, host mobility, and energy constraints.

Since an ad hoc network can be rapidly deployed and reconfigured on an envi-

ronment without a previously studied infrastructure, military applications were the

most promising potential field of use until recently. With the increasing need of (any-

time, anywhere) access to information, commercial applications of ad hoc networks

have started to appear. A very recent increase in interest to ad hoc communication is

related to the field of sensor networks, where small embedded devices autonomously

try to form a network to disseminate sensed information towards a destination [1].

There are numerous research activities in wireless networks, and ad hoc networks

form one major research track among them. Although number of diverse wireless and

mobile technologies increase, they tend to serve the sole purpose of mobile, unified and

2

continuous access to networked services, which is the essential motivation behind the

ubiquitous [2] or pervasive computing [3].

1.1. Problem Definition

Ad hoc networking has its name because of the style of communication need

between users of the network. Therefore it does not refer to a specific technique or

technology at a given layer, such as gigabit ethernet networking or fiber optic commu-

nication, but is a multi-layer problem. Although ad hoc networking related research

frequently focuses on fundamental problems like routing, channel access etc., the prob-

lems of concern are spread all over the classical network protocol stack. Communicating

parties usually do not have access to central, structured services but they try to dy-

namically adapt themselves to the current environment, usually via assuming some

others presence and will for participation. This mood of communication creates hard

problems to solve compared to the classical wired networking world.

An important trade off is of concern where proposed solutions try to improve an

isolated part of the classical networking stack for ad hoc networking purposes. Using

such an approach, there exists the risk of inheriting structured network assumptions

from those classical solutions. But this kind of an approach is usually better when

compatibility with existing protocols is needed. For example, a routing protocol trying

to route IP datagrams in an ad hoc network assumes that IP is valid and applicable

as a network layer (or as further transport services) in ad hoc networks. Although IP

may be optimized for the purpose, any other possible alternatives are to be discarded

to keep routing compatible.

Since multiple access wireless link protocols are more mature (in the sense that

there are many commercially available ad hoc communication capable wireless local

area network interface cards) than ad hoc network protocols at layers of network and

above, more problems are identified and attacked at these upper layers. A course

classification of ad hoc networking problems may be done in two categories as routing

and application.

3

1.1.1. Routing Related Problems

In [4], Tanenbaum defines routing as the decision on an incoming packet specifying

the output line (or the next hop) the packet should be transmitted. Even definition

itself has the implicit assumption of the knowledge of the topology, at least a part of

it. In networks without certain infrastructure information available, this problem is

usually solved by using topology discovering messages (e.g., HELLO packets). In ad

hoc networks, however, topology information maintenance for routing is much more

costly because nodes are mobile, and wireless links are fragile compared to wired links,

even with static nodes. Changing topology requires an ad hoc network node to have up-

to-date information, at least for some part of the current topology by either a proactive

or reactive approach as mentioned in Section 3.1. The routing protocol for an ad hoc

network should optimize the amount of the network bandwidth and node energy used

for topology discovery and maintenance purposes and should be fast enough to gather

necessary topological information to determine how to carry on routing of a packet

towards a specific destination node.

One major problem to be addressed by the routing algorithm is the scalability of

the mechanism. The routing algorithm performance should stay in reasonable bound-

aries as the number of nodes and size of geographic area of concern increase. Having

well-scaling algorithms for large number of mobile nodes is not trivial. Factors that

have impact on the scalability are not only internal features of routing algorithms but

also link layer properties of nodes (i.e., CSMA type medium access has its own issues

of scalability). A routing algorithm will scale better if it is built on distributed control

algorithms, rather than global information from all over the network. The routing

algorithms ability to scale to hundreds of nodes may determine its wide use in the

future.

Another problem that the routing algorithm will be faced with is its complexity.

As the decision of a relaying node in the ad hoc network is more dependent on externally

gathered information, the complexity of the routing protocol increases. It will be easy

to implement a simpler routing protocol and its computational requirements (both

4

processor and memory wise) will be low comparably. The routing algorithm should

also be kept as simple as possible so far as specialized nodes are concerned. Specialized

nodes perform rather critical operations of routing (as cluster heads, group leaders or

zone boundary nodes) and yet they are prone to link and other failures like other nodes

of the network. In the extreme case, routing is aided or performed by some central

node, equipped with up-to-date topological information. This approach is usually not

preferred except for some small ad hoc networks. Therefore routing protocol should

keep homogeneity of the ad hoc network (in the sense that duties of nodes are identical)

as much as possible. If heterogeneity is unavoidable, failure resilient distributed duty

assignment algorithms must be provided to have routing service available at all times.

An important feature that may affect routing decision of a specific node is the

knowledge of available capabilities of the nodes on the way to the destination node. For

example, using the smallest hop including path for routing all packets to a destination

may cause a bandwidth bottleneck on the network depending on the current topology

(i.e., increased medium access contention for the hosts on route). Additionally, if power

efficiency is considered, this approach will also cause unfair power consumption for the

nodes on route, resulting in quickly dying critical nodes in the ad hoc network. More

examples may be given in favor of feature-aware routing mechanisms. Therefore a

routing mechanism for an ad hoc network should provide ways to use node features as

decision criteria in routing.

Fundamental problems that should be addressed by ad hoc network routing algo-

rithms are not limited to those mentioned above. Many others, like multicast routing

and secure routing, are vital for different applications of ad hoc networks and have still

open issues to be investigated for researchers.

The MANET working group of IETF [5] is primarily focused on developing and

evolving routing specifications for ad hoc networks. As the time of writing, group has

already published ten draft routing protocols and one RFC on evaluation of routing

protocols.

5

1.1.2. Application Related Problems

Requirements of applications in ad hoc networks have significant impact on the

solutions that should be provided by any ad hoc networking protocol. Applications to

be developed and run on ad hoc network hosts can not be designed like their wired-

world counterparts. Powerful processing, plenty of storage space, and enhanced device

features (e.g., large high resolution display units) may and would probably be un-

available. Also, QoS (i.e., upper limit on packet loss, guaranteed end-to-end rates or

delay) is not an easy to offer feature for ad hoc networks, considering limited wireless

spectrum (providing limited available bandwidth), mobile users and dynamic topol-

ogy, time and environment varying weak wireless links. Therefore an ad hoc network

application should be aware of the underlying environment to some extend and adjust

itself accordingly considering the services and capabilities that are available. This will

lead to better performing adaptive applications having ad hoc aware design from the

beginning.

Applications should be provided natural mechanisms to suit themselves to the

dynamic characteristic of the ad hoc network. A major mechanism serving this purpose

is definitely (late) binding to services in the ad hoc network. Having well defined

algorithms for discovering, binding and utilizing services on the ad hoc network is

important, since the main reason of existence for an application is to benefit from

a service provided by another host over the ad hoc network (which may even be the

routing itself). For the same reason, a descriptive mechanism to represent these services

is also needed. Applications will make use of this representation of services to decide

if a candidate service is the one satisfying requirements.

Additionally, applications should have their end-to-end communication services

from lowest possible layers, since every new introduced layer into the ad hoc network-

ing stack will bring its overhead and complexity to this already fragile environment.

Therefore better performing applications will require slim network stacks and benefit

from cross-layer design of these kind of stacks. This idea of cross-layer design is further

described and discussed in [6].

6

1.2. Motivation

The fundamental motivation behind the work in this thesis is to provide appli-

cations of ad hoc networks with a simple cross-layer protocol stack that is capable of

offering mechanisms to announce, discover, bind to and use the services made avail-

able by all other applications on the network. This proposed service-centric approach

tries to define all needed algorithms to have communicating applications. Required

underlying connectivity may be supplied by many of the available wireless link layer

protocols.

Using some of the currently available ad hoc network protocols together may

provide this defined functionality, such as using TCP/IP protocol stack with a suitable

IP datagram routing approach (e.g., DSR or AODV) and a service discovery protocol

(e.g., SLP). Such available protocols are explained in detail in Chapter 3. However,

using these well-studied ‘heavy-weight’ protocols may not be suitable for many appli-

cations so far as the complexity of those protocols are concerned. Such protocols are

usually variants of their wired and fixed world counterparts, and bring their ‘abstrac-

tion from neighboring layers’. In order to have an adaptive communication capability

in a dynamic environment (i.e., ad hoc networking environment), the available proto-

cols should be kept as simple as possible with cross-layer design in mind. A cross-layer

design, in this sense, aims to provide direct service to applications without any mid-

dleware layers and their protocols (i.e., such as without having separate network and

transport layers to create lower layer independency). This characteristic is needed to

let the applications suit themselves to the underlying dynamic network without using

‘all-purpose’ network protocols.

The proposed simple approach in communication of ad hoc network applications

is designed with service access as the objective. Having service access as the driving

force of the proposed approach is natural because the applications are built to benefit

from the services available on the ad hoc network. For this reason, service awareness

is integrated into the algorithms of the protocol.

7

1.3. Contribution

In this thesis, a simple cross-layer protocol is designed for use of ad hoc network

applications. This protocol has necessary algorithms to announce, discover and bind

to network services. While providing service access for hosts, the protocol also offers

solutions to host addressing, multihop packet routing, session and buffer management,

and service naming.

Using the proposed protocol, applications may use non-interactive services (See

Section 4.1 for details) available on the ad hoc network. The protocol algorithms are

designed as simple as possible to help building an easy to implement network stack

and only assume a basic link connectivity from underlying data link layer protocol.

Applications using this protocol do not need any other protocols to have transport

service or service discovery service.

For the algorithms of the protocol to work in a service-aware manner, a service

definition model is designed using extensible markup language (XML). This attribute-

value pair holding design is used throughout the algorithms of the protocol to refer

specific instances of services offered by the hosts of the ad hoc network. Hosts of the

ad hoc network are also represented as attribute-value pair holding XML instances.

Having host and service instances used in algorithms, an easy to enhance protocol

is designed. Features like battery awareness or QoS provisioning may be implemented

to be embedded into the proposed protocol.

1.4. Organization of the Thesis

This chapter of the thesis gives an insight into the proposed protocol. Rest

of the chapters are organized as follows. In Chapter 2, basic definitions, medium

access issues and mobility models are presented to form a background on the subject.

Chapter 3 briefly visits the state of the art in ad hoc networks, emphasizing routing and

service discovery related work. Chapter 4 gives the details of the proposed protocol by

8

explaining protocol elements and algorithms developed. Chapter 5 explains the inner

workings of the simulation implemented and Chapter 6 presents the experiments done

and their results. Concluding remarks and future work are given in Chapter 7.

9

2. BACKGROUND INFORMATION

2.1. Definitions

In this section, we give the definitions of frequently used concepts throughout

the thesis. If possible and available, we provide sources of definitions and alternative

approaches for definitions.

2.1.1. Ad Hoc Network

Ad hoc is a Latin origin adjective meaning ‘arranged’, ‘for the particular pur-

pose’ [7]. An ad hoc network or to be more clarifying, a mobile ad hoc network is “an

autonomous system of mobile routers (and associated hosts) connected by wireless links

–the union of which form an arbitrary graph” as defined by Internet Engineering Task

Force (IETF) Mobile Ad Hoc Networks Official Charter [5]. They use abbreviation

MANET for mobile ad hoc network and further describe it as follows: “The routers

are free to move randomly and organize themselves arbitrarily; thus, the network’s

wireless topology may change rapidly and unpredictably. Such a network may operate

in a standalone fashion, or may be connected to the larger Internet.”

A MANET is also defined as “a network architecture that can be rapidly deployed

without relaying on pre-existing fixed network infrastructure” in [8]. With the two

definitions in mind, characteristics of an ad hoc network may be summarized in the

following (non-exhaustive) list:

• wireless connectivity (usually bandwidth constrained)

• mobility of hosts

• lack of inherent infrastructure

• multi-hop connections (participation for others)

• rapid deployment, short term usage

• self configuration, reconfiguration

10

• adaptiveness under node and link failures

• energy constraint operations

• limited physical security

• expected to scale well in most cases

Ad hoc networks find use in diverse applications for tactical operations, rescue

missions, law enforcement and education. Although establishing a base requirement

analysis for all those types of applications is hard, it is obvious that applications of ad

hoc network require an immediately deployed data network for cooperative information

exchange. In [6], Goldsmith and Wicker discuss how flexible must an ad hoc network be

for such diverse applications and they categorize applications as data networks, home

networks, device networks, sensor networks and distributed control systems.

Ad hoc networking is an interesting research area where one may easily find the

restrictions that are available on various kind of networks appearing altogether. In any

given ad hoc network, nearly all resources are scarce such as links are low capacity,

nodes are battery powered, connections are dependent on others presence and will etc.

This makes ad hoc networking research both interesting and demanding.

2.1.2. Other Definitions

Following list consists of some of the terms used and their short descriptions to

provide clear understanding for the rest of the text. Some of the definitions are taken

from [9].

• Access Point: A two port bridge that connects a wireless LAN to a wired

Ethernet LAN. Also known as Wireless Access Point (WAP).

• Announcement: Process of emitting an information to the network via broad-

casting or flooding.

• Asymmetric Link: A link with transmission characteristics which are different

depending upon the relative position or design characteristics of the transmitter

and the receiver of data on the link. For instance, the range of one transmitter

11

may be much higher than the range of another transmitter on the same medium.

• Broadcast: The delivery of data to every node on a link (i.e., within range of

the transmitter).

• Channel: The center frequency that the wireless device uses to transmit.

• Control Message: Information passed between two or more network nodes for

maintaining protocol state which is not associated to any specific application.

• Flooding: The process of delivering data or control messages to every node

within the ad hoc network.

• Forwarding Node: A node within an ad hoc network which performs the func-

tion of forwarding packets from one of its neighbors to another.

• Hidden Terminal Problem: The problem whereby a transmitting node can

fail in its attempt to transmit data because of destructive interference which is

only detectable at the receiving node, not the transmitting node.

• Link: A communication facility or physical medium that can sustain data com-

munications between multiple network nodes, such as an Ethernet (simple or

bridged).

• MAC Layer Address: An identifying address (sometimes called the link layer

address) associated with the link interface of a node on a physical link.

• Neighbor: A neighbor is any other node to which data may be propagated

directly over the communications medium without relying the assistance of any

other forwarding node.

• Next Hop: A neighbor which has been designated to forward packets along the

way to a particular destination.

• Pathloss: A reduction in wireless signal strength caused by traversing the phys-

ical medium constituting the link.

• Payload: The actual data within a packet, not including protocol headers which

were not inserted by an application.

• Route Discovery: The process of finding and setting up a route between a

source and a destination

• Scalability: Wide applicability of a protocol to large as well as small populations

of nodes participating in the protocol.

12

• Scenario: A described course of actions in a sample ad hoc network, specifying

host population, environment, mobility, applications etc.

• Service Discovery: The process of finding a network service provided by some

other host of the network.

• Source Route: A source route from node A to node B is an ordered list of

host addresses, starting with the host address of node A and ending with the

host address of the node B. Between A and B, the source route includes an

ordered list of all the intermediate hops between A and B, giving each nodes host

addresses.

2.2. Medium Access Layer

Medium Access Protocols for wireless networks deal with the sharing of avail-

able spectrum among users. To address this, the spectrum is first to be divided into

channels. This division may be in the form of frequency division, time division, code

division or a combination of those three. Then there is the issue of assignment of those

channels to user. Since most data users will not be requiring continuous transmission,

dedicated channel assignments are avoided. For this purpose, random access methods

are widely used in accessing available wireless channel. Further discussion on the topic

is found in [10]. In the following subsections, two characteristic problems for medium

access are given and some of available MAC protocols are listed. Among those, most

widely used IEEE 802.11 is inspected in some more detail.

2.2.1. Fundamental Medium Access Problem

Among the available MAC protocols suitable to be used in wireless ad hoc net-

works, Carrier Sense Multiple Access (CSMA) [11] is widely used as the channel access

strategy. Several MAC protocols based on CSMA are proposed, eliminating the two

basic problems of the CSMA type access, hidden and exposed terminal problems.

Hidden and exposed terminal problems are illustrated in Figure 2.1. The hidden

terminal problem occurs because there exists no transition property between wireless

13

� ��

�

� ��

�

�

������	
������
	����
�� �������	
������
	����
��

Figure 2.1. Hidden and exposed terminal problems

communication ranges of nodes. Node a hearing node b and node b hearing node c

does not necessarily mean that node a hears node c. In the hidden terminal problem

part of Figure 2.1, node c is communicating with node b. Since node a is not in the

transmission range of node c, it can not hear the session between node c and node b.

Therefore whenever node a wants to communicate with node b, it will sense the medium

free and ruin the session between node b and c, by causing collisions at node b. For

the exposed terminal problem example, node b is transmitting data to node c. Since

node a hears this transmission, it defers from accessing the medium. However, node a

wants to transmit data to node d, which does not cause collisions at node c. Although

it is feasible for both transmissions to take place simultaneously, CSMA access scheme

does not permit this transmission. The reason for both of these problems is the fact

that collisions occur at the receiver, while the CSMA protocol checks the status of the

medium at the transmitter [12].

In a shared wireless communication medium, nodes can not detect a collision

while transmitting, since node’s own transmission power is always dominant compared

to the power of signal received. Therefore collision avoidance techniques are used

in wireless environments. Solutions to the mentioned hidden and exposed terminal

problems usually include a dialog between the transmitting and the receiving node

that announces the upcoming transmission. This mechanism is called Request To Send

and Clear To Send (RTS/CTS) mechanism and provides avoidance from collisions. It

is used in MAC protocols like MACA [13], MACAW [14], FAMA [15], EYNPMA [16],

14

and IEEE 802.11 (CSMA/CA) [17].

Among the protocols that support wireless channel access, IEEE 802.11, ETSI

HIPERLAN/2 [18], HomeRF [19], and Bluetooth [20] are standardized protocols. Fol-

lowing subsection provides a closer look to the widely used IEEE 802.11 MAC protocol.

2.2.2. IEEE 802.11 MAC Protocol

IEEE 802.11 is a standard protocol for wireless local area networks (WLAN) with

physical layer (PHY) and medium access control layer (MAC) specifications [17]. It

provides asynchronous and time bounded delivery service for wireless connectivity of

fixed, portable and mobile stations moving at pedestrian and vehicular speeds within

local area. It also defines an ad hoc network for devices within mutual communication

range. IEEE 802.11 provides maximum data rates of 1.2 Mb/s (802.11), 11 Mb/s

(802.11b), 54 Mb/s (802.11g and 802.11a). All current IEEE 802.11 variants work at

2.4 GHz ISM band except 802.11a which operates at 5 GHz band (only licensed for

North America).

IEEE 802.11 is also an interoperability standard for wireless LAN devices that

identifies three major distribution systems for wireless data communication:

• Direct Sequence Spread Spectrum (DSSS) Radio Technology

• Frequency Hopping Spread Spectrum (FSSS) Radio Technology

• Infrared Technology

The 802.11 MAC specification provides shared access to a wireless channel by

making use of two access methods called point coordination function (PCF) and dis-

tributed coordination function (DCF). PCF access method is not of our interest so far

as ad hoc networking is concerned, because it is used by the access points of WLANs

(Wireless Access Point –WAP) to coordinate contention-free access of neighboring

nodes to the medium. Access points are devices used to construct an infrastructured

network (possibly connected to a wired backbone) where each and every host of the

15

���������	�
�	
��
������������	�����������
��	��� ����
����������������	�����������
��	���

Figure 2.2. An infrastructured and ad hoc wireless network configuration

network should be in the wireless coverage area of the WAP as illustrated in Figure 2.2.

DCF, however, is used in wireless networks without an access point. Hosts com-

municate with each other as the definition of ad hoc networking states. This mode of

communication is also referred to as ad hoc mode in 802.11 specification. An ad hoc

network configuration example is also given in Figure 2.2. DCF access method is based

on CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) and provides

contention-based shared access to the medium.

The main access mechanism method used in DCF is called Basic Access Method.

Before a station starts transmitting a MAC protocol data unit (PDU), it has to sense

the channel to be idle. Channel is assumed to be idle if no activity is sensed for a time

interval of DIFS (DCF Inter-Frame Space). After the transmission of the station takes

place, the receiver should acknowledge the frame by an ACK frame, since the sender

may not hear the collisions at the receiver which prevents faithful delivery as explained

in Section 2.2.1. To transmit an ACK, the receiver waits for another time interval of

SIFS (Short Inter-Frame Space) to ensure the channel is idle. If the transmitter does

not receive this expected ACK frame in a certain time-out period, it presumes the data

frame is lost and schedules a re-transmission.

If medium is sensed to be busy when planning to transmit a data or ACK frame,

16

Figure 2.3. IEEE 802.11 MAC basic access method

the transmission is deferred until the end of the current transmission. In scheduling

a re-transmission, a random back-off interval is to be selected. For this reason, a

back-off timer is constructed by selecting a back-off integer (BV) randomly from a

uniform distribution over the interval [0, CW − 1], where CW (Collision Window) is

an integer within the range [CWmin, CWmax]. The selected integer BV is the number

of idle slots the station must wait before starting transmission (the clear slot definition

is found in [17]). The BV value is decremented by one for each detected idle slot. If

another transmission starts before BV reaches to zero, decrementing stops and resumes

only after this transmission finishes (meaning the channel is idle for DIFS time). The

station starts transmitting its frame when the value reaches zero. For each successive

re-transmission, the value of CW is set to CW ∗ 2 − 1 to introduce an exponential

increase. CW is increased in this way until it reaches to CWmax and increased no

more. When a successful transmission occurs, CW is reset to CWmin. This method

is proposed to provide minimum collisions for varying utilizations of the network. An

illustration to clarify this process is given in Figure 2.3.

DCF has also another access strategy to provide transmission of data frames.

This method facilitates the use of RTS/CTS mechanism as mentioned in Section 2.2.1.

RTS/CTS messages are used to reserve channel for the upcoming transmission. RTS

message is transmitted by the station which has a data frame to transmit and the

intended receiver of the frame responds with a CTS message. For RTS and CTS

transmissions, the channel is checked as in the ACK frame transmission. RTS and CTS

17

frames carry the time period during which the upcoming transmission will take place.

Upon receiving this information, all neighboring nodes construct a channel reservation

table, called NAV (Network Allocation Vector). This method of channel management

is known as virtual carrier sense mechanism, and helps reducing contentions due to

hidden terminals.

It is vital to understand the offered load versus throughput characteristic of IEEE

802.11 under varying number of stations because CSMA type channel access starts to

have high impact on the upper layer protocol performance. In [21], Liu et al. show

that as offered load to the network increases from 60 to 80 percent, the packet loss,

fraction of retransmissions, and packet service times all increase dramatically .

2.3. Mobility Models

Mobility models are widely used for hosts of the ad hoc networks in order to

analyze and simulate the physical behavior of mobile nodes in the network under con-

sideration. Performance of the protocol that is to be inspected is highly dependent

on the traces of movement that represent characteristics of users of the network. It

is possible to use pre-recorded movements of mobiles that have been gathered for a

similar scenario. However, it is usually costly to collect such real world traces and

finding a representative scenario is not always a trivial task. For this reason, artifi-

cially generated movements of mobiles are used in ad hoc network studies. The models

for this purpose may be broadly put into two categories as independent node mobility

models and group mobility models. A more detailed survey of mobility models for ad

hoc network research can be found in [22].

2.3.1. Independent Node Mobility Models

Models that belong to this class generate mobility traces of hosts independent of

each other. Many such models have been proposed in the literature and some of the

commonly used models are mentioned with their key characteristics in this subsection.

18

Random Walk Mobility Model is a simplistic approach to mobility pattern gener-

ation, where mobile nodes move to their next location with a randomly selected speed

and direction. After a pre-determined constant amount of time or distance, mobile

node selects another random speed and direction to travel, completely independent of

its previous move. Nodes that reach the terrain dimensions are usually bounced back

or re-forced into the terrain from the mirror reflection of its exit point.

Random Waypoint Mobility Model [23] is an extended random mobility model

where nodes stay at their locations for a determined amount of time, called pause

time. Between pauses, node chooses a random destination and starts to travel to that

destination with a speed distributed between [vmin, vmax]. Upon arrival, another pause

takes place. This model is also used in our simulation experiments for the proposed

architecture (see Section 6.4).

Random Direction Mobility Model [24] is an enhancement made to random way-

point mobility model to eliminate the effect of convergence. In random waypoint

mobility model, nodes are more likely to travel using the middle of the simulation

area in order to reach their next destinations. To overcome this effect, nodes do not

stop travelling until they reach the terrain boundary on their selected direction. Upon

reaching the terrain boundary, node then pauses and initiates another movement.

Boundless Simulation Area Mobility Model [25] provides a previous move depen-

dent velocity and direction for a mobile node’s movement. At every time step, ∆t,

velocity of the mobile is incremented or decremented ∆v amount. ∆v is uniformly dis-

tributed between [0, Amax ∗∆t], where Amax is the maximum possible acceleration for a

mobile node. If velocity is computed below zero or above a vmax, it is assumed zero or

vmax respectively. Similarly the new direction of mobile is selected by incrementing or

decrementing a ∆θ amount of change to current direction. ∆θ is uniformly distributed

between [0, αmax ∗ ∆t], where αmax is the maximum possible angular change in direc-

tion. In this model, nodes may well travel without bouncing on the terrain boundaries,

instead they re-appear on the opposite side of the terrain.

19

Markov Mobility Models constitute a group of mobility models, that have been

used for cellular and ad hoc network mobility modeling. In two-dimensional markov

model, probability of moving left, moving right, and staying stationary are defined.

Similar approaches are used for other types of markov models (e.g., probabilities of

moving to any of the six neighboring cells are defined for some cellular networks).

Smooth Random Mobility Model [26] is another extension of the simpler random

walk model where two independent stochastic processes are used to trigger direction and

speed changes. The new speeds, for example, are chosen from a weighted distribution of

preferred speeds. Upon such a trigger, the speed (or direction) changes as determined

by a Poisson process.

Random Gauss-Markov Mobility Model [27] is an improvement over the Smooth

Random Mobility Model. In the model, new speed and direction of the mobile is deter-

mined by using its past speed and direction plus a random variable. The randomness

in the model is provided by this tuning parameter. This model eliminates the sudden

and sharp movements seen in the Random Walk Mobility Model.

Also in [28], Tuğcu and Ersoy present a realistic mobility model, where different

classes of mobiles are distributed and driven to move on a real city district map.

Mobiles behave according to the class they belong to (i.e., vehicular mobiles travel

on highways with high speeds or low speed mobiles walk on streets). Also transitions

between different mobile classes are provided to reflect the realistic behavior of real

world mobiles (i.e., people getting in their cars, travelling on highways to reach home,

walk to their houses and stand still).

2.3.2. Group Mobility Models

Mobility models fall into this category because generated mobile node movements

are dependent on each other. Whatever the underlying motivation is, nodes move in a

somehow cooperative manner (e.g., attacking an enemy, sightseeing a tourist attraction

or rescuing people). Mobility models, for this reason, should reflect this behavior in

20

the generated traces. This subsection briefly mentions some of the well know group

mobility models. Compared to independent ones, group mobility models are rather

new and less studied.

The basic form of a group motion in mobility models appear in [29] as Fluid Flow

Mobility Model. The motion of nodes are modelled as a set of constant velocity fluid

flow equations. However, the concept of fluid flow is used in defining mobility of nodes

of a cellular network (i.e., traversing cells) in the given reference.

Column Mobility, Pursue Mobility and Nomadic Community Mobility Models are

described in [30] and given in intuitive explanations. The three mobility models may be

referred to as a less general form of Reference Group Mobility Model (RPGM) [31]. In

RPGM, random motions of mobile node groups and random motions of mobiles within

those groups are defined. Each group has a logical center, around which the movement

of the overall group is constructed. Nodes in Column Mobility Model are placed on

an initial grid and each node may move within a constant distance from its point on

grid. As the grid is moved along, nodes follow the movement of the grid, generating

an overall group movement. In Pursue Mobility Model, a selected node within the

group is tracked by the rest of the group. This behavior generates mobility traces for a

target chasing environment. Nomadic Community Mobility Model represents a group

of mobiles that travel according to a reference point and use their independent mobility

models to roam around the given reference point.

21

3. STATE OF THE ART IN AD HOC NETWORKS

Ad hoc networks offer new applications in many areas together with their impor-

tant technical challenges. Many researchers attack different problems of ad hoc net-

working for years. Among those research topics, some of them are frequently addressed

like routing and MAC layer issues. Table 3.1 is simplified from the categorization in [32]

and classifies the published ad hoc networking related research in year 2001 within the

IEEE organization. This classification gives an overview of active research areas on ad

hoc networks. However, this is not the only way to classify the available work. For

example, among those publications, twenty-two of them present a power-aware scheme

for ad hoc networks.

To provide the reader with necessary background on related research, following

two sections classify and examine some of the available work into two groups routing

and service discovery. The work appearing on this chapter is by no means exhaustive

and only gathers some of the ad hoc networking research that we believed to be inter-

related with the proposed work in this thesis.

3.1. Routing

The multi-hop ad hoc network routing problem is one of the first and very fre-

quently attacked problem in the history of ad hoc networks. Relaying packets that

belong to someone else is an inherent obligation from the use of limited range wire-

less communication equipment. Since routing protocols for wired and infrastructured

networks have been extensively studied [4], many of the proposed ad hoc routing algo-

rithms have roots in those well-known approaches. Traditionally, the routing protocols

are evaluated in two main categories: proactive and reactive. A survey of available ad

hoc network routing protocols is given in both [12] and [33].

22

Table 3.1. Classification of ad hoc networking research in year 2001

Research Category Number of Publications

Routing 73

MAC, Scheduling, Physical layer 31

Special Ad Hoc Networks 18

Applications 17

Clustering, Organization, Topology 16

General Overviews 9

Internet Protocols on Ad Hoc Networks 8

Network Management 7

QoS, Service Differentiation 7

New Network Concepts 5

Service Availability 5

Positioning, Situation Awareness 5

Transport Issues 2

Security 2

Mobility 1

3.1.1. Proactive Routing Protocols

Proactive routing protocols try to discover the topology of the ad hoc network by

exchanging topological information among nodes. The discovered topological informa-

tion is stored in tables for future use and these kind of routing approaches are sometimes

referred to as table-driven protocols. Any node on the network has the advantage of

finding a route to the destination node immediately. Price for this information is paid

in the extra control traffic generated.

First proposed ad hoc routing algorithms were proactive type and usually based

on Distributed Bellman-Ford (DBF) algorithm [34]. Attacking excessive control traffic

and convergence problems of DBF, many variants are found in the literature such

as [35] and [36].

Destination Sequenced Distance-Vector Routing(DSDV) algorithm is a well known

23

improvement on DBF, appeared in [37]. DSDV introduces full table broadcast and

event-driven incremental updates to limit control message overhead. Table updates

are emitted with sequence numbers to ensure fresh route information at nodes. Also

DSDV lets nodes to settle before they send table information to neighbors. Global State

Routing (GSR) [38] is similar to DSDV and takes the idea of link state routing but

improves it by avoiding flooding of routing messages. Fisheye State Routing (FSR) [39]

is an adaptation of GSR, where a given node exchanges topology information about

closer nodes more frequently than it does about farther nodes. This reduces the update

message size used in GSR. Introducing such hierarchy into routing is frequently used.

Hierarchical State Routing (HSR), as presented in [40], is a multilevel clustering and

logical partitioning of mobile nodes. Each node has a hierarchical address and routing

is realized via cluster-heads. Clusterhead Gateway Switch Routing (CGSR) [41] also

uses DSDV as a basis and constructs the hierarchy by selecting cluster-heads and

gateway nodes. This way, routing is simplified into a process of packet transmission to

cluster-heads. Cluster-heads know what to do (forwarding to necessary gateway) with

the packet.

A different approach in proactive routing protocols is to apply link state protocols

to the ad hoc network routing problem. A good example of this approach is the

Optimized Link State Routing (OLSR) algorithm [42]. In principle, OLSR specifies

link state algorithms on multi point relay (MPR) set of nodes. A node‘s MPR set is

a subset of its neighbors whose combined radio range covers all nodes two hops away.

Routes are computed and update information is forwarded using a node’s partial view

of the network. Zone-based Hierarchical Link State Routing (ZHLS) [43] is a link

state protocol variant and introduces hierarchy to provide virtual links between non-

overlapping partitions, called zones. Routing is realized by making use of zone id values,

till packets reach the correct zone. Then node id values are used within zones. Core-

Extraction Distributed Ad hoc Routing (CEDAR) [44] is another link state protocol

variant where routing decision is made based on QoS. The virtual backbone is termed

as core and is basically computed using the Minimum Dominating Set scheme. This is

done by maintaining local states and executing local computations. Propagating the

bandwidth information across the virtual backbone performs QoS routing. The route

24

from the source to the destination is computed taking into account the maximum

available bandwidth path with minimum number of hops.

There are also proposals that combine features of distance vector and link state

approaches. Wireless Routing Protocol (WRP) [45] is such an example where each

node in the network maintains a distance table, a routing table, a link-cost table and a

message retransmission list. Compared to DBF, it reduces the amount of route looping

and ensures reliable update message exchange.

3.1.2. Reactive Routing Protocols

Reactive routing protocols, which are often called on demand routing methods,

are based on the idea of finding routes as needed. This idea eliminates the overhead of

proactive approach where control messages are exchanged in the network to maintain

up-to-date topological information. However, route discovery latency is of concern for

reactive approaches, since finding route on the fly requires flooded query messages on

the network.

Ad hoc On-demand Distance Vector Routing (AODV) [46] is the on demand trans-

lation of DSDV (See Section 3.1.1). Each AODV running node keeps a destination

indexed next-hop routing table. If a route is needed for an unseen destination, a route

request message is broadcast (using an expanding ring). As the route request message

travels, it updates the tables of hosts on route (about the source node). A unicast

packet is replied back either from an immediate node (which knows the way to the

destination) or from destination itself. This way, source discovers the route on the fly.

On broken link failures, source (and the hosts on the broken route) is informed and a

new route discovery is initiated if necessary.

Dynamic Source Routing (DSR) [23] is an on demand source routing protocol.

A DSR running node maintains route caches containing the source routes that it is

aware of. The node updates entries in the route cache as and when it learns about new

routes. If a source has no recorded route to destination, it initiates a route discovery by

25

broadcasting a route request packet to its neighbors. The route request packet contains

the address of the source and the destination, and a unique identification number. Each

intermediate node checks whether it knows of a route to the destination. If it does not,

it appends its address to the route record of the packet and forwards the packet to

its neighbors. To limit the number of route requests propagated, a node processes the

route request packet only if it has not already seen the packet and its address is not

present in the route record of the packet. A route reply is generated when either the

destination or an intermediate node with current information about the destination

receives the route request packet. A route request packet reaching such a node already

contains, in its route record, the sequence of hops taken from the source to this node.

On broken link failures, source is informed with a route error packet and a new route

discovery is initiated if necessary. There are many optimizations specified for DSR that

increases its efficiency. These are given in [47].

The Temporally Ordered Routing Algorithm (TORA) [48] is an on demand pro-

tocol designed to minimize reaction to topological changes. A key concept in its design

is that it decouples the generation of potentially far-reaching control message propa-

gation from the rate of topological changes. Such messaging is typically localized to a

very small set of nodes near the change without having to resort to a dynamic, hierar-

chical routing solution with its attendant complexity. In TORA, routes are established

only when necessary by constructing a directed acyclic graph rooted at the destination

using a query and reply process. Reaction to link failure is only given when necessary

(i.e., when a node loses its last downstream link) and scope of failure reactions are

minimized (i.e., the number of nodes that must participate).

Associativity Based Routing (ABR) [49] is based on the concept of associativity,

and new routing metrics are introduced, which are the longevity of a route (route

relaying load) and the link capacity. The basic idea of associativity is that there is

no point in choosing a shortest-hop route if a route is going to be invalidated due to

the node’s mobility. Every node learns its ‘association’ with the surrounding nodes,

where association can mean signal strength, power life, period of presence or spatial

and temporal characteristics. The key idea is to choose a route that goes through nodes

26

having a high degree of association stability. ABR has a similar route discovery phase.

Signal Stability-Based Adaptive Routing (SSR) [50] is another on-demand routing

protocol that selects routes based on the signal strength between nodes and a node’s

location stability. This route selection criterion has the effect of choosing routes that

have ‘stronger’ connectivity.

Location Aided Routing (LAR) [51] is an on-demand protocol that makes use of

physical location information of destination node to reduce the search space for route

discovery. Instead of flooding the whole network with route discovery message, this

protocol send messages to a subset of nodes from whom the probability of finding route

is very high. After a few unsuccessful attempts, this subset may grow to the size of

whole network. Thus it attempts to reduce the latency of route determination.

Also, gossiping (originally proposed for probabilistic multicast) has recently been

applied to minimize query traffic while flooding in reactive on demand routing proto-

cols. In [52], authors propose a gossiping-based approach, where each node forwards a

message with some probability, to reduce the overhead of the routing protocols.

3.1.3. Hybrid Routing Protocols

Proactive routing protocols can generate the required route very quickly, but

waste too much of the available bandwidth for network topology exchange informa-

tion. Reactive protocols may reduce this waste of bandwidth but they may encounter

excessive delays in finding a route because of flooding the network with route queries.

A middle-way approach is to incorporate features from both ‘extremes’. This approach

is seen in hybrid routing protocols.

Zone Routing Protocol (ZRP) [53] is such a hybrid approach where route deter-

mination is on-demand, but with limited cost of the global search. In this approach,

a Routing Zone is defined for each node which includes the nodes whose distance is

at most some predefined number (e.g., in terms of number of hops). This distance is

27

referred to as the zone radius. Each node is required to know the topology of the net-

work within its zone only and any updates about change in topology are done within

the zone only. That is updates are only locally propagated.

Distributed Dynamic Routing Algorithm (DDR) [54] is a hierarchical hybrid rout-

ing algorithm which is an improvement over ZRP. It greatly reduces routing complexity

and increases delay performance. The basic idea is to construct a forest from a net-

work topology, which consists of connected non-overlapping dynamic zones (also called

trees).

3.2. Service Discovery

With the increase of the available services that are accessible via computer net-

works, providing ways to access those services gained more importance. The ‘waiting

goal’ to achieve is to provide users with such a framework that no user configuration

of any kind is necessary to find, locate, and use the available services on the network.

For this purpose, service discovery protocols provide the mechanisms for users to:

• Lookup and browse around the available services

• Extract necessary information to be able to select the right service

• Utilize the service

Role of service discovery is significant when ad hoc networking is of concern

because there exists no infrastructure inherited from the network itself. For example,

using a service discovery protocol, a notebook capable of using Bluetooth technology,

may be able to discover the GPRS capability (GPRS connection service) of a nearby

cellular phone, in order to get access to Internet for new e-mail check. In the following

subsections, currently available service discovery protocols are summarized.

28

3.2.1. Service Location Protocol

Service Location Protocol (SLP) [55] is being developed by IETF and aims to

be a vendor-neutral standard supporting ‘spontaneous’ discovery of services. In the

defined SLP architecture, three elements exist:

• User Agents (UA) : Realize service discovery on behalf of clients

• Service Agents (SA) : Advertise location and attributes of services on behalf

of service offering applications

• Directory Agents (DA) : Gather service location and attribute information

from SAs and record them into a database for future references (to respond

queries)

Whenever a new service is offered, the SA contacts the DA to advertise this new

service. If a user needs to find a certain service, it queries the available services in the

DA. Only after getting location and attributes of the service, client may start utilizing

the service.

There may be more than one DA in the network, which actually increases the

efficiency of the protocol because SA and UA uses unicast messages to communicate

with DAs. Before SAs and UAs try to talk to a DA, they first need to obtain address

of it via DHCP.

Services are defined by using Service URLs and Service Templates. They encode

the address, type and attributes of the service. A sample service URL and its associated

template is given in Figure 3.1.

Currently, SLP version 2 is available, and version 1 has been implemented in

commercial products supporting HP JetSend technology (like printers, digital cameras,

scanners, PDAs etc.).

29

service:printer//lj4050.tum.deL1020/queue

scopes = tum, bmw, administrator

printer-location = Room 0409

pages-per-minute = 9

printer-name = lj4050

Figure 3.1. A sample service URL and its associated template for SLP

3.2.2. JINI

JINI is a Java environment extension and developed by Sun Microsystems Inc. [56].

Since SLP has its roots at Sun Microsystems, there are some inherit similarities in both

protocols. However, JINI is tightly coupled to Java, where SLP is provided as vendor-

neutral.

JINI addresses the issue of how devices connect to each other in order to form a

simple ad hoc network, named a JINI community. For this purpose, JINI provides an

architecture and a programming model.

All hosts that will use JINI are assumed to have a working Java Virtual Machine

(JVM) implementation. Service registration process of JINI is called discovery and

join. Similar to DA in SLP, JINI has Lookup Table on a lookup server, where services

on the network are recorded. Different from DA entries, JINI can store Java codes to

Lookup Table. This feature enables the service clients to download device drivers or

interfaces from the Lookup Table as well.

The JINI specifications and reference implementations are open source and may

be freely downloaded for non-commercial use from Sun Microsystems web site [57].

3.2.3. Salutation

Salutation is an approach to discover services and developed by an open indus-

try consortium, called Salutation Consortium (composed of companies including HP,

30

IBM, Xerox and AOL) [58]. The architecture of Salutation includes three components:

Client, Server and Salutation Manager (SLM).

SLM manages all communication and sometimes referred to as service broker.

Services register themselves to SLM and clients query SLM when they need a service.

After discovery, clients are able to request utilization of the service from SLM. All Salu-

tation protocol is based on SunRPC, which seems to be the only technology dependent

part of the design. SunRPC provides no multicast other than broadcast and does not

provide strong encryption.

Salutation may operate without a directory, where clients and services locate each

other directly. This allows a flexible protocol, where establishing a directory service

is costly (in automobiles, home etc.). Salutation is designed to be highly compatible

with available wireless technologies, and already have commercial implementations.

3.2.4. Universal Plug and Play

Universal Plug and Play (UPnP) is a standard for spontaneous configuration

developed by The Universal Plug and Play Forum, which is led by Microsoft Corp. [59].

UPnP extends Microsoft Plug and Play technology to devices that are accessible via

a computer network. As an architecture, UPnP resembles Salutation and SLP. It uses

XML for device definitions, service definitions and queries on them. UPnP requires IP,

HTTP and XML support to function correctly.

A UPnP device is said to export one or more services and the service definition

XML can be complete abstract description of the type of service, the interface to a

specific instance of the service and even be the ongoing state of the service.

There is no central service directory to which services register themselves. The

Simple Service Discovery Protocol (SSDP) [60] is used within UPnP to find and locate

services. Starting from the URL provided by the definition XML, SSDP defines a web

based discovery protocol, which uses HTTP.

31

3.2.5. Bluetooth Service Discovery Protocol

Bluetooth is a new short range wireless transmission technology containing Blue-

tooth Service Discovery Protocol (SDP) used to locate the services provided by or

available via Bluetooth devices. Details of SDP is given in [61] and modified from the

Piano platform of Motorola to suit dynamic nature of ad hoc communications.

SDP supports search for services by type and by attribute. Also SDP allows users

to browse available services without any prior knowledge of service characteristics. SDP

has no functionality in accessing services, and once discovered, selecting, accessing and

utilizing is done with mechanisms out of the scope of SDP (e.g., may be realized by

using other service discovery protocols like SLP or Salutation).

3.2.6. Secure Service Discovery Service

The Secure Service Discovery Service (SSDS) is a University of California, Berke-

ley research project [62]. SDSS is quite similar to other discovery methods with im-

provements in reliability, scalability and security. SSDS is implemented in Java but

unlike JINI, uses XML for service description and location.

SSDS architecture has clients, services and Secure Discovery Service (SDS) Servers.

SDS Service availability is periodically announced by multicast messages containing

URLs for the available SDS server. Architecture provides ways to add more servers to

scale up the system under heavy load.

The key characteristic of SSDS is security and in the architecture, all parties are

authenticated before operations. Furthermore, all message traffic is encrypted.

3.2.7. Intentional Naming System

Intentional Naming System (INS) [63] is designed to discover resources and locate

services for dynamic and mobile networks of devices and computers. INS applications

32

may be services or clients. Clients request and access the data or functionality provided

by services.

Intentional Name Resolvers (INR) form an application-level overlay network to

exchange descriptions of services, construct a local cache based on these advertisements

and route client requests to the appropriate services. INRs are self configured with no

manual intervention. INS uses a simple descriptive language with attribute-value pairs

for its names, which enable the service to be specified precisely.

INS has a late binding mechanism that integrates name resolution and message

routing. This enables clients to continue communicating with end nodes even if the

name-to-address mappings change while a session is in progress. INS applications

may submit data to the service together with the definition of the required service.

Therefore INRs play important role in binding and routing.

In order INS to scale large number of names and services, Domain Space Resolvers

(DSRs) and partitioned virtual spaces are defined to restrict the working scope of INRs.

33

4. PROPOSED PROTOCOL

SeMA is an architectural approach to mobile wireless ad hoc networks (MANET)

with the fundamental motivation of defining a complete ad hoc network in the sense

that applications are provided with a framework of protocols and primitive mechanisms.

SeMA is an acronym for ‘Session Based Multi-layer Ad Hoc Network Architecture’

and has also been interchangeably used for ‘Service Aware Mobile Ad Hoc Network

Architecture’. Basics of the architecture have first appeared in [64].

The protocol proposal in this thesis forms a part of the SeMA architecture, trying

to provide mechanisms to define, announce and access to services for ad hoc network

hosts. While realizing this, issues of routing, session management and binding are

addressed for a complete discussion of an ad hoc network architecture. Unless otherwise

noted, in the context of this thesis, the acronym SeMA is frequently used to refer to

the proposed protocol itself, discarding the rest of the architecture elements.

4.1. Overview

SeMA provides a protocol stack operating with three components to accommo-

date access to general purpose network applications such as printing, file transfer and

so on in a highly mobile dynamic ad hoc environment. In such a target environment,

neither an infrastructured network underneath nor an overlay lookup network exist.

Nodes are assumed to be willing to relay each other in order to maximize their access

to each others services.

The ad hoc network is formed, maintained, and terminated for the simple purpose

of benefiting from a service provided by some other host of the network. The lifetime

of the network is therefore determined by the duration of the client server interaction.

In this sense, SeMA defines the ad hoc network to be a session (either transparent to

the application or not) between communicating parties. According to this definition, a

group of wireless communication capable mobile nodes do not necessarily form an ad

34

hoc network. An activity of communication for service access (a session) is necessary

to call them a part of an ad hoc network. IETF MANET working group’s definition

of an ad hoc network in Chapter 2, however, does not mention such a property.

Services are announced in the SeMA network for possible future uses by the ad

hoc network hosts. But the service binding is delayed until the actual service request

is made by the application. SeMA also provides mechanisms to discover the services

whose announcements have not reached before the application request is made.

For the operation of proposed protocol, a wireless medium access control (MAC)

and link layer is required. Only broadcast and unicast frame transmission and link

failure detection functionality are assumed to be supported in the data link layer.

Broadcast frame transmission capability is found in almost all available data link layer

protocols because of the broadcast nature of the wireless medium. This capability is

necessary to disseminate announcement type information through the SeMA network.

Link failure detection facility is required to sense and act accordingly (i.e., triggering

some protocol algorithms) in case of a unicast packet transmission failure. This feature

also exists in many of the available wireless data link layer protocols, including popular

IEEE 802.11 variants.

SeMA architecture supports network layer addressing without any need for newly

introduced unique identifiers for mobile nodes (such as IP addresses) and make use of

already available data link layer addresses as identifiers. Apart from being unique

addresses, classical network layer addressing provides no extra information or ease for

protocols so far as our protocol proposal is concerned. A popularly used approach, (in

almost all available literature as the time of writing) is to use IP as the network layer

and develop algorithms of routing, service discovery etc. at IP layer. Although using IP

provides provision for native access to other IP networks (i.e., fixed infrastructure) and

introduces ability to connect inhomogeneous media, motivation of network address and

host address approach (and its related IP routing algorithms) of IP does not make sense

for an ad hoc network where no infrastructure exists at any level. SeMA applications

use a slim protocol stack without any IP mechanisms embedded inherently.

35

For our proposal, possible services on ad hoc networks are classified into two

categories, namely non-interactive and interactive. Non-interactive services are kind

of services that usually require best effort delivery and contain no constant interaction

of client and server. This kind of service is usually for applications that only need

to deliver its intended data to remote party. A printing service can be given as a

non-interactive service type example. Printing service client submits its document for

printing, and only further interaction is the reception of the success indication for the

submitted job from the printer service provider host. Interactive services, however,

requires interaction from remote endpoint of communication and have applications like

file transfer, peer-to-peer voice and video communication. These kind of services require

more than best effort delivery (i.e., reliable delivery for a file transfer application, or

delay bound for a video application) and SeMA layer introduces extra mechanisms to

satisfy those requirements (e.g., network layer acknowledgements). To clarify the type

of service provided by the protocol, non-interactive service support can be classified into

‘connectionless’, interactive service support can be classified into ‘connection oriented’

approach of communication. The rest of the document specifies the protocol, discusses

and presents the results that are related to non-interactive services, which has been

studied extensively for the course of the thesis.

Services in the proposed ad hoc network are discovered to start a session, and

a valid source route is extracted from the announced service. Then packets of this

session are forwarded through the relaying hosts according to this initial route. Route

optimizations take place at all intermediate nodes to overcome link breaks, mainly

because of the mobility of those nodes.

We have already defined the ad hoc network as a session between the service

provider and its user. Keeping this in mind, sessions of non-interactive services are

maintained by SeMA, transparent to the user. These transparent sessions start with

the late binding to the service of concern (after the discovery and lookup phases if

necessary) and end with the termination indication from the remote party. Service

client is not aware of the internals of the ongoing session, and only presented with a

success indicator if all packets of the session are delivered to the service owner host.

36

APPLICATION

SeMA

LAYER

DATA LINK

LAYER

Client

Application

Session

Manager

Session Cache

Routing

Agent

Service Table

Service

Agent

Comm.

Agent

Session Table

User

Service

Figure 4.1. An overall look to the SeMA protocol stack

Session maintained by SeMA for interactive services, however, is not transparent to

the application and application explicitly uses the provided session handle to further

maintain and send data over the session. Application also voluntarily terminates the

session, which was done implicitly on delivery for non-interactive services.

The overall look to the components and their interactions for the proposed proto-

col is illustrated in Figure 4.1. The Section 4.4 provides a closer look to the individual

components of the overall picture.

37

4.2. Modelling of Protocol Elements

For the proposed ad hoc networking protocol, it is vital to clearly define and rep-

resent elements of the network model under consideration. These representations are

to be used both in formal definitions of protocols and in the implementation of proto-

col algorithms. Details and motivations behind this representation has also appeared

in [65].

The two key elements of the protocol are host and service instances. These

instances are defined and represented as extensible markup language (XML) [66] in-

stances that conform to an XML Schema [67], designed to specify structure and content

of the instances. Before processing an XML instance, the document is first checked to

be well-formed according to the XML version used. Then, the document is validated

using its respective schema document, in order to ensure that the rules specified in the

schema are honored in the instance.

XML is chosen since it provides a flexible, easy-to-parse, structured text-only

format to access data efficiently. However, a practical disadvantage of using a human

readable text format is the size of the XML instances generated. Some of the instances

are to be carried in protocol data packets and text-only format is not effective for this

purpose. Details and a solution for this problem are given in Section 5.2.1. Following

two sections discuss how host and service instances are defined in the protocol.

4.2.1. Modelling Hosts

Hosts are defined to conform the XML schema document named hostSchema and

have various tags and attributes. Listing of the hostSchema XML schema document

(XSD) that is required to validate mobile host XML instances is given in Appendix A.

Although all existing attributes of a host instance are related to that host, some of

them are not needed by the protocol itself but used by the simulation software of the

protocol. Current coordinates of the host, for example, is homed by its XML instance

but not required by protocol mechanisms to function properly.

38

Figure 4.2. Main and first level child elements of host XML documents

Feature-based characteristic of the host instances helps to build protocols that

are aware of a specific feature (e.g., a power-aware routing scheme or secure service

discovery). The main element and first level child elements of the host XML documents

are illustrated in Figure 4.2.

Following discusses some of the features of mobile host XML instances using the

sample XML instance provided in Figure 4.3 on Page 39. Mobile hosts are identified

by their wireless link layer addresses, which is discussed to be necessary and sufficient

in Section 4.1. This attribute is in the main mobileHost tag and is the only mandatory

host XML instance field. The movement, transmission, and reception are simulation-

related tags and their attributes help simulation software to properly locate, move, and

determine nodes and their wireless communication ranges (not all of them are currently

used in developed simulation software). The linkEquipment tag homes host’s wireless

and wired interface connection properties, such as link interface card type (e.g., IEEE

802.11b) and brand. If host has access to an IP network, its IP address is also given in

39

<mobileHost linkID=“A3:55:4F:C3:64:B4” lastUpdate=“2003-01-22T13:20:00.000-05:00”>

<movement>

<currentMove x=“13” y=“44” speedunit=“m/s” speed=“244”>In Region 4</currentMove>

<nextMove speedunit=“m/s” speed=“200”>45</nextMove>

</movement>

<transmission>

<currentPower>200</currentPower>

<maxRange>500</maxRange>

<shape>circle</shape>

</transmission>

<reception>

<currentPower>120</currentPower>

<maxRange>500</maxRange>

<shape>circle</shape>

</reception>

<linkEquipment>

<bluetooth id=“7”>disabled</bluetooth>

<ieee802.11 ver=“a”>cisco aironet</ieee802.11>

<ieee802.11 ver=“g”>proxim</ieee802.11>

<ip connectivity=“yes”>193.244.55.61</ip>

</linkEquipment>

<measurements>

<cpu utilization avg=“67”>i386</cpu>

<wlink utilization avg=“11” collision avg=“0.01”/>

</measurements>

<battery type=“NiMh” maxCapacity=“450”>200</battery>

<security level=“high”>

<publicKey id=“03” algorithmName=“PGP” length=“64”>110...00</publicKey>

</security>

</mobileHost>

Figure 4.3. XML definition of a sample mobile host

this tag. The measurements tag has live measurements of some host related attributes

that are updated throughout the lifetime of the host. The battery is a separate tag

in a mobile host instance since battery related features of a mobile are usually very

important and vital. Many protocol features and behavior of applications can be related

to battery type and capacity of the mobile hosts under consideration. The security

tag is suitable to announce mobile host’s abilities of cryptographic communication,

including its public keys and algorithms.

40

Figure 4.4. Main and first level child elements of service XML documents

4.2.2. Modelling Services

All available resources offered for use by mobile hosts are formally defined as

services of the ad hoc network under consideration. Services constitute the backbone

of the protocol as many of the mechanisms are built with services provided by mobile

hosts of the ad hoc network in mind. The overall idea is such that hosts of the SeMA

architecture try to lookup, discover and bind to services offered in the network. They

do not try to find ways to reach directly to hosts and then services.

The specification of a service should include necessary information for an ad hoc

network host to correctly determine whether its need for the service can be fulfilled

by this instance. A similar descriptive modelling approach is used for Service Location

Protocol (SLP), and Guttman et al. give service types in attribute and value form

in [55]. Similarly in our protocol, service instances are represented as attribute-value

pairs where an attribute is a category in which a service can be evaluated (e.g., paper-

size for a printer). A value is the classification of the service within that category (e.g.,

A4 for papersize attribute). Attribute and values are free form strings defined by ap-

plications that offer those instances, and may only be meaningful for those client-server

application pairs. But names of services are to be organized in a coordinated manner

since at least a name is required to identify a service instance. This coordination may

be realized by a naming authority, similar to what Internet Assigned Numbers Author-

ity (IANA) does for SLP. This simple element structure of serviceSchema document

to which service XML documents are supposed to conform is given in Figure 4.4.

In our protocol, mobile hosts announce the services they provide by broadcasting

necessary service instance XML documents via the Service Announcement mechanism

designed. At the service client (i.e., host of the application that will be using this

41

<service name=“printer”>

<keyword attribute=“location”>Engineering B.443</keyword>

<keyword attribute=“color”>no</keyword>

<keyword attribute=“papersize”>A4</keyword>

<keyword attribute=“papercount”>81</keyword>

<keyword attribute=“postscript”>yes</keyword>

<keyword attribute=“maxResolution”>600*600</keyword>

</service>

Figure 4.5. XML definition of a sample printer as a service instance

service), protocol elements do a basic name checking and filtering among the services

available to return matching service instances to application. This process is covered

in detail in Section 4.4.2. Choosing a service among suitable instances is not a trivial

task and it is not the responsibility of the protocol proposed. Features that exist in the

available candidate instances are meaningful to application that needs binding. Our

protocol tries to provide applications with valid service instances as close as possible

to their requests. Selection process among the found instances is the duty of the

application. The protocol mechanisms however, has the ability to present some optimal

alternatives as long as they refer to the same service instance (e.g., such as offering the

shortest hop route alternative to the application).

Figure 4.5 and Figure 4.6 provide two sample service XML instances that is well-

formed and valid to be used in SeMA. In Figure 4.5, a printer service instance is given

with its various attributes and their respective values. For an example scenario using

this instance, a SeMA application will not be able to select and bind to this printer if it

needs a printer to print a colored document of a hundred pages. Figure 4.6 illustrates

how a classical http service may be represented as a SeMA service instance. It will be

possible for a mobile host to have classical http service by looking up a service instance

named httpDocument. IP connectivity of the host that provides this service is another

issue and beyond the discussion of the service specifications.

<service name=“httpDocument”>

<keyword attribute=“baseURL”>www.netlab.boun.edu.tr/people</keyword>

<keyword attribute=“filename”>index.html</keyword>

</service>

Figure 4.6. XML definition of a sample web page as a service instance

42

�
�
�
�
�
��
��
	

�

�
�

�
�
��
��
�

�
�
�
�

�
�
��
��

�
�
�
�
�
�
�
�
��
�
�
�
�

�
�
�
��
��
��
�

�
�
	
��
�
�
��

�
�

�
�
�
��
��
�

�
�
�
�
�

�

�
�

�
�
�

��
!

�
�
"#

�
�
��
�
�
��
�
�
�

��

�
�
�
��
��
��
�

��
�
��
�
�
�
�
��
!

��
�
�
��
��
�
��
�
�
��

�
�
	
��
�
�

$ % & ' () * + , $- $$

Figure 4.7. SeMA packet structure

4.3. Packet Structure

SeMA protocol stack defines mechanisms to create, maintain and terminate an

ad hoc network, and uses the packet structure illustrated in Figure 4.7.

A SeMA packet on the ad hoc network is uniquely identified by the combination

of fields (2), (3) and (4) in Figure 4.7. Since there is no fragmentation defined between

SeMA and the underlying data link layer, a SeMA packet has to fit into one data link

frame, which determines the upper limit on the size of a packet. Maximum available

payload space in SeMA packets is determined by the typical reserved space for host

instances and expected maximum network diameter (i.e., maximum number of hosts

in source routes). The description of fields for the SeMA packet is given as:

1. Packet Type: Indicates one of five distinct packet types of SeMA. Their names

and brief explanations are given in Table 4.1.

2. Client Id: Unique identifier of the node (provided by the data link layer) where

the session is originated.

3. Session Id: A locally unique identifier generated by the client node for a session

which has already, obtained binding. It is 0 when packet is of type announcement

or lookup reply. This field is used as a TTL field when packet is of type lookup

(See Section 4.4.2.4).

4. Sequence Number: A unique, packet identifying number within the session (3)

43

Table 4.1. SeMA packet types

Packet Type Explanation

SeMA DATA Regular application data for sessions

SeMA LOOKUP Broadcast packet to search for services

SeMA LOOKUPREPLY Reply to the lookup originator

SeMA ANNOUNCEMENT Broadcast packet to advertise services

SeMA TERMINATE Session termination indicator

of host (2).

5. Last Flag: This flag is used to mark the last packet of the session (See Sec-

tion 4.4.1.4).

6. Lost Flag: This flag is used to mark a packet whose next hop was found un-

reachable by the last processing routing agent (See Section 4.4.3.2).

7. Timewindow of Service Instance: A relative time interval during which the

corresponding service is available (See Section 4.4.2.3).

8. Route Hop Count: The number of intermediate hosts available in the source

route field (9).

9. Instances of Hosts on Route: Host XML instances of the intermediate hosts

that constitute the source route for this packet. First instance being the originator

of the packet, and the last instance being the destination of the packet. These

two special instances are not counted in (8).

10. Payload Size: Size of the payload field (11) in bytes.

11. Payload: The portion of the packet that carries the intended data.

4.4. Components

SeMA protocol is composed of four functional units called session manager, rout-

ing agent, service agent, and communication agent, as illustrated in Figure 4.1 on

Page 36. In the protocol stack, session manager is the unit that interfaces the SeMA

layer to applications and communication agent is the unit that interfaces the SeMA

layer to the available data link layer. Service and routing agents mainly perform net-

work layer operations, related to packet forwarding and service table maintenance.

44

Session manager tries to manage the ad hoc network by initiating service fetch process,

organizing session packets and terminating the current session.

4.4.1. Session Manager

Session manager coordinates the applications request for service by making pro-

tocol primitives available. Its internal mechanisms are built around the idea of the ad

hoc network that is maintained for the sake of a session.

4.4.1.1. Announcing Availability of Services. Upon deciding to offer a service avail-

able to the hosts of the ad hoc network, an application uses offer primitive of the

session manager to provide necessary information to the session manager. This infor-

mation includes a valid and well-formed service XML instance and a validity timestamp.

The XML instance is composed of a service name which is a defined word from a broad

classification of services, and descriptive attribute-value pairs. With the use of offer

primitive, the host becomes the provider of a service, specified by the respective XML

instance until the time given in the validity timestamp is reached. The validity time

and offering repetitions for a service determine how fresh are the entries found on the

hosts of the ad hoc network.

The session manager informs the service agent to trigger the necessary action for

enabling a service on the network, called service announcement. Service announcement

is simply a flooded information for the potential ad hoc network hosts stating the

availability of a service in the network. Details of service announcement procedure is

given in Section 4.4.2.

4.4.1.2. Session Table. Session table is the main data structure of the session manager.

This table holds information about the inbound (originated from remote parties to

benefit from services provided by this host) and outbound sessions. Some of the fields

of a session table entry and their brief usages are given in Table 4.2.

45

Table 4.2. Important fields of a session table entry

Name of Field Explanation

sessionType Indicates the session as either inbound or outbound

remoteAddr Host address of the remote party taking role in this session

localSessionId Locally unique, assigned session id

localApplicationId Identifier of the local application (provider) taking role in this session

remoteSessionId Locally unique (at remote side), assigned session id

localApplicationId Identifier of the local application taking role in this session

departureBuffer Used to maintain outgoing SeMA packets if session is of type outbound

arrivalBuffer Used to maintain incoming SeMA packets if session is of type inbound

lastPacketArrived Indicates the arrival of SeMA packet with last flag set

sessionActive Used to mark the session as all expected packets arrived, or timeout

4.4.1.3. Maintaining an Inbound Session. An inbound session is started with the first

SeMA packet received from the routing agent, bearing an unseen remote session iden-

tifier from a given remote host. A quick search on the records of the session table is

necessary to decide if this packet belongs to an unseen session. If so, a new session

table entry is created, it is initialized, a new locally unique session identifier is assigned,

and this very first packet of the session is recorded into the sessions arrival buffer. The

application that offered the service under consideration is not aware of this ongoing

session and will be informed of this activity after all packets of the session arrived.

With the arrival of the last packet belonging to this session (which may be either the

packet with last flag set or an expected out-of-sequence delivery), session manager re-

orders any out-of-sequence delivery before passing the pointer to the arrived data to

the application.

Upon the successful reception of all packets, session manager asks routing agent

for initiation of a terminate packet towards the remote party, which will be the indi-

cation of graceful reception of all packets and termination of the ad hoc network. An

incomplete session with no new packet arrival in SEMA SESSION TIMEOUT CHECK

time, which is a protocol parameter, is assumed to be a timed-out session.

Session manager is provided with no duplicate packets for a given session since

46

routing agent uses a session cache to discard previously seen packets. Operation of the

session cache is explained in Section 4.4.3.

4.4.1.4. Maintaining an Outbound Session. For an outbound session to start, appli-

cation first needs to ask for an available service instance that has not expired as the

time of binding by using fetch service primitive of session manager. Service agent is

responsible for service table search or service lookup procedure which will extract the

available matching services (See Section 4.4.2.4 for details). Session manager silently

passes found suitable instance alternatives to the application. If application chooses to

use one of the alternatives, it passes a pointer to its data to be submitted together with

the instance identifier using send primitive of the session manager. The application is

now bound to the remote service (late binding) and session manager acts to start the

session. For the purpose, a new session table entry is created and initialized, a new

locally unique session identifier is assigned, and the submitted data is processed to be

put into SeMA packets. Data is fragmented, and sequence numbers are associated if

total data size exceeds the maximum possible payload size of one SeMA packet. Last

packet (the only packet if no fragmentation took place) of the session always has its last

flag set to indicate the number of fragments this session owns. Details of the structure

of a SeMA packet are given in Section 4.3. This ready-to-go packets are placed into

the sessions departure buffer. Routing agent of the host is responsible from making

those packets their way to the destination. Mechanisms of routing are discussed in

Section 4.4.3.

Session manager also informs the application of a successful delivery if termination

packet of the remote party is received. Applications are to maintain their exception

or timeout mechanisms to handle the absence of termination indication from session

manager.

Since session manager keeps the information related to a given session in a table

entry, together with all necessary buffers, it is possible to maintain multiple sessions

(from different applications or from the same application). A session on SeMA network

47

may be uniquely identified by a <localSessionId, hostAddr> tuple. The same session is

always uniquely addressed by its corresponding <remoteSessionId, remoteAddr> tuple.

4.4.2. Service Agent

The SeMA sessions are created, maintained, and terminated in a service-centric

manner. To manage this, a separate functional entity, called service agent, is defined.

Service agent maintains the service table, a vital data structure of the protocol, and

performs service related message processing.

4.4.2.1. Service Table. Service table is the main data structure of many algorithms

defined in the SeMA protocol stack. It is composed of entries that contain service

instances available at remote hosts. The fields of the table and a sample entry is

illustrated in Figure 4.8. The table is updated and new entries are added during the

lifetime of the host. Service table is not only used by the service agent itself, but also

used by the routing agent to extract valid source routes for a given service instance.

Service table is mainly populated by the service instances that are delivered

by the communication agent as service announcement packets (See Section 4.3 for

SeMA packets). Service announcements are broadcast messages forwarded through

the network to have local service tables with up-to-date service information available

on the network. Service agent may record the instance into the table if it satisfies some

���������	
��

���������	
��	��
 � � ����� �
���	
��	���� ��� �� ��� ��

���������	
���
���	���
�

������� �� � � �� �
����
�� �� �
�	� ��� �� � � �� �

������� �� � � �� �
����
�� ��������
�� ����� �� � � �� �

����������

����������

��� � ���� � ���� � �� �
� !" " !# !$ % !& ' !� " (�

��������
����� ��� ���
) ���
��
* �
"
�' & ���
����� �

����������+ ���� �������
, �- ,
�

���������������+ � ���. �� ��� �
/ 0 /
�" " �1 � ��+ � ���. �� �

�����������

���� � ���� � ���

� 	���

� �������

� 	���

� � � ������ 	

 � � ����� �
���	
��	��
�� �

� � �� ��� �	� �� �
�

����������������
� � � �� � �! "

! � � �# $ �� !

� � � �� � �! "

! "� � �# $ �� !

�	� ��

% "

� � �

& � ' 	�

"

Figure 4.8. Service table with a sample entry

48

conditions. These are discussed in the Section 4.4.2.2.

It is legal for service table to include more than one entry for a given service

instance on a remote host. The alternative entries provide different multihop routes

towards the provider of this specific instance. The host instances of the route from

which this service instance carrying announcement packet is received is recorded into

the table together with its hop count. It is also clear that this approach is consistent

with the service-centric protocol in the sense that given two services provided by the

same remote host is not necessarily reached via the same route (i.e., host or network

feature aware routing).

Service table entries bear a timestamp that indicates the time that the entry

is inserted. Also extracted from the service announcement packet, there is the entry

expiration timestamp, determining the time that the service instance is valid as a

working alternative.

Service table entries are accessed via their index numbers and this number is

assigned at insertion automatically by the service agent. Index numbers are not reused

and expired entries (according to their expiration information) are not removed as

long as available space permits. Expired entries may be used for some optimization

alternatives in case of route losses towards a specific host.

4.4.2.2. Handling Arriving Announcements. Upon receiving a SeMA packet of an-

nouncement type, the communication agent of the SeMA stack passes the packet to

the service agent for processing. If it is the first time that this service instance is re-

ceived from the provider host, a new service table entry is created, an index is assigned

and the service instance is recorded with its provider and forwarder host instances.

The arrival timestamp entry is filled with the current wall clock of the host, and the

expiration timestamp is found by adding the validity interval (from the received packet)

to this arrival timestamp. The reason for such a timestamp mechanism is explained in

the Section 4.4.2.3.

49

If service agent finds one or more valid (not expired) entries for the same service

instance from the same host, the announcement packet is processed in a different

manner. If there is a SEMARP SERVICE TABLE ADDING HOP THRESHOLD or

less hop count carrying entry recorded, this new entry is treated as ‘too expensive to

record’ in the sense that number of hops to reach the provider host is high compared to

what is already in the table. This threshold value is a protocol parameter to be adjusted

according to the node density of the target environment. If the arriving announcement

hop count is suitable, it is recorded to the table and the announcement is passed to

the routing agent for further relaying. Service agent does not relay the announcements

that is not recorded because it is usually waste of bandwidth to further relay what

is found to be ‘worthless’ to record. As a further emergency break, no more than

SEMARP SERVICE TABLE SAME SERVICE LIMIT number of entries pointing to

the same service of the same host is recorded to the table, even if it is found feasible by

the threshold value check. This feature is necessary to prevent an ever-growing service

table in an environment where very densely deployed ad hoc network hosts exist (i.e.,

generating more than necessary route alternatives). If the received announcement is

found as an entry in the table except its expiration timestamp, only a timestamp

update is done by the service agent.

The arriving service announcement handling algorithm performed by the service

agent is given in Figure 4.9.

4.4.2.3. Handling Departing Announcements. Applications are interfaced with offer

primitive of the session manager for service starting purposes. The session manager

asks service agent for announcement of this new service as explained in Section 4.4.1.1.

Service agent first inserts this new service to its own service table, and prepares a SeMA

packet of type announcement. The service XML instance provided by the application is

put into the payload of the packet and this hosts XML instance is placed as the first host

on the route, indicating this host as the provider of the service. The time interval value

of the packet is filled with the difference of the absolute service validity time provided

by the application and the current wall clock of the host. Therefore the packet carries

50

a relative time interval during which the service is provided by this host. This relative

time interval is necessary to maintain a working distributed expiration mechanism

without the assumption of centrally synchronized clocks of different mobile hosts. It is

obvious that the ad hoc network would need a central clock synchronization method,

if service agent inserts the absolute service lifetime timestamp into the announcement

packet. By using a time interval in announcement packets, on the other hand, we

ignore the time that the announcement packet spends during the flooding over the

handleArrivedServiceAnnouncement(SeMA Packet announcement)

SeMA ServiceTableEntry stEntry;

SeMA HostInstance providerHost, hostOnRoute;

SeMA ServiceInstance announcedService;

parseServiceXML(announcement.payload, &announcedService);

parseHostXML(announcement.providerXML, &providerHost);

If (providerHost.hostId == myInstance.hostId)

\\ This is my service offering

Set notToBeProcessed = TRUE; return;

forall announcement.hostsOnRouteXML

parseHostXML(announcement.hostsOnRouteXML, &hostOnRoute);

If (hostOnRoute.hostId == myInstance.hostId)

\\ Circular announcement flooding detected

Set notToBeProcessed = TRUE; return;

forall matching stEntry

If (stEntry.hopCount + SEMARP SERVICE TABLE ADDING HOP THRESHOLD

< announcement.hopCount)

\\ It is not worth recording

Set notToBeProcessed = TRUE; return;

If numberof(matching stEntry) > SEMARP SERVICE TABLE SAME SERVICE LIMIT

\\ Have enough of this service already

Set notToBeProcessed = TRUE; return;

/* Yet another service instance is recorded to the table */

recordIntoServiceTable(&announcement);

/* ... and it is further relayed to be flooded */

sendRoutingAgent(&announcement);

return;

Figure 4.9. The arriving service announcement handling algorithm

51

network. Upon reception, a service agent acts as if the service is valid for an interval

starting at the moment of reception.

The algorithm that service agent uses to start offering services is given in Fig-

ure 4.10.

4.4.2.4. Fetching and Discovering Services. The fundamental purpose of the service

agent is to find suitable service instances to the applications that used fetch service

primitive of the session manager. Service agent uses the service instance provided by

the application as the basis of its decision.

First, the service agent performs a service name matching query on the service

table among the entries that carry a valid (not expired) timestamp. For those entries

that match the requested name, an attribute-value filtering is applied. Found entries

are eliminated as long as they do not have the specified attribute-value pairs by the

application. The attribute-value pairs specified by the application may be a subset

of available services attribute-value pairs. These extra features are to be evaluated

by the application itself. If at least one valid service instance is found satisfying the

conditions above, its service table index is returned to the session manager, therefore to

handleDepartingServiceAnnouncement(SeMA ServiceXML offeredService, timestamp validUntil)

SeMA Packet announcementPacket;

Set announcementPacket.pktType = SeMA ANNOUNCEMENT;

Set announcementPacket.clientId = myInstance.hostId;

Set announcementPacket.twOfServiceInst = validUntil - now();

Set announcementPacket.payload = offeredService;

generateHostXML(myInstance, &announcementPacket.hostsOnRoute[0]);

/* Adding my own service to my own service table */

recordIntoServiceTable(&announcementPacket);

/* ... let it start to be announced */

sendRoutingAgent(&announcementPacket);

return;

Figure 4.10. The departing service announcement handling algorithm

52

the application. If more than one matching instance is found, all of them are returned

to the application for a further decision. Currently, this matching is done on per service

instance of a host basis, meaning that only one entry is returned for a specific service

instance on a specific host. This is because the populated entries for a given instance

at a given host are there for routing purposes, and application, currently, do not select

services on routing alternative basis. From the provided instances, application starts

the ad hoc network by selecting one of them and binding itself by submitting its data

to the session manager.

If no matching service instances are found on the local service table, the procedure

called service lookup is initiated by the service agent. The purpose of the service lookup

is to find a valid suitable service instance as quick as possible, preferably from near

neighbors service tables. To initiate a service lookup, service agent prepares a SeMA

packet of type service lookup and attaches the requested service instance received from

the application. The service lookup packet is actually a broadcast message but is emit-

ted to the network using an expanding ring approach to limit the unnecessary message

flooding. The service lookup messages carry a time-to-live (TTL) value (literally in

sessionId field of the SeMA packet) which is decremented at every forwarding hop and

the message is no more relayed when TTL reaches zero. By adjusting the TTL value,

the service looking host controls the diameter of the scope of the lookup request.

Communication agents of the hosts that receive a service lookup packet pass the

packet to their service agents which then realize a similar check on their respective

service tables. If at least one valid matching entry is found, the entry is sent back to

the originator of the lookup request in a unicast lookup reply packet (i.e routing agent

reverses the route that the respective lookup packet has arrived with). The answering

service agent concatenates the route from this host to the service provider (using the

service table entry) with the route on the lookup packet, so that the originator of the

lookup will be able to find out how to reach the service provider host via this answering

host. If no suitable entry is found locally and if TTL value permits, the lookup request

is broadcast again to the network (with TTL value decremented by one). For the worst

case, if such a service exists somewhere reachable in the network, the lookup request

53

reaches the provider of the service.

If the service lookup originator has not received a service lookup reply from

some host on the network, its service agent re-broadcasts the message with an in-

creased TTL value. Currently the lookup start diameter is determined by the SE-

MARP SERVICE LOOKUP EXPANDRING START DIAMETER parameter and in-

creased by SEMARP SERVICE LOOKUP EXPANDRING STEPSIZE amount of hops

for every SEMARP SERVICE LOOKUP EXPANDRING TIMEOUT amount of time

passed without a service lookup reply packet received. This ring is expanded for SE-

MARP SERVICE LOOKUP EXPANDRING RETRIES times at most before the ap-

plication is informed of ‘no such service available’.

Upon reception of a service lookup reply from a neighbor (near or far), the service

agent behaves as if it has received a service announcement and places this new infor-

mation to its service table and returns the index of this entry to the session manager

in order to satisfy awaiting application fetch request.

For our proposed protocol, there is a trade off between number of service an-

nouncement packets and number of service lookup or lookup reply packets. If scope of

announcement flooding is limited, then service lookup actions are expected to be fre-

quent. Currently flooding of service announcements are not limited, therefore resulting

in less lookup need and low latency in service discovery.

The summary of the operations to find a service is given as the findService algo-

rithm in Figure 4.11.

4.4.3. Routing Agent

Routing agent is the component of the protocol that tries to attach valid routes

to new SeMA packets, forward the ones attached with routes, and heal the ones that

have lost their way to destination because of link breaks. All entities of the protocol

ask routing agent to have a SeMA packet sent out of the host.

54

4.4.3.1. Routing Strategy. For unicast packets of the SeMA protocol, source routing

is used to send packets towards their destinations. Different from other source rout-

ing approaches, like Dynamic Source Routing (DSR) [23], source route discovery is not

defined as a separate process but already realized with the service announcement mech-

anism. Routing agent is provided with SeMA packets from session manager that are

already bound to a service instance available in the service table of the host. Routing

findService(SeMA ServiceInstance askedService)

SeMA Packet lookupPacket;

SeMA ServiceTableEntry stEntry;

forall stEntry

If ((stEntry.serviceName == askedService.serviceName) & &

(stEntry.attribute/values ⊇ askedService.attribute/values))

Set numberOfSuitableInstances++;

addToFoundList(stEntry);

If (numberOfSuitableInstances > 0)

sendSessionManager(FoundList); return;

Else

/* ... start service lookup */

Set numberOfLookupAttempts++;

Set lookupPacket.pktType = SeMA LOOKUP;

Set lookupPacket.clientId = myInstance.hostId;

Set lookupPacket.sessionId = SEMARP SERVICE LOOKUP EXPANDRING START DIAMETER;

Set lookupPacket.payload = askedService;

sendRoutingAgent(&lookupPacket);

Wait Until

lookupReply received:

recordIntoServiceTable(&lookupReply);

sendSessionManager(newServiceIndex); return;

timeout in SEMARP SERVICE LOOKUP EXPANDRING TIMEOUT received:

If (numberOfLookupAttempts < SEMARP SERVICE LOOKUP EXPANDRING RETRIES)

/* increment expanding ring diameter and repeat lookup */

Set lookupPacket.sessionId += SEMARP SERVICE LOOKUP EXPANDRING STEPSIZE;

sendRoutingAgent(&lookupPacket);

goto(WaitUntil);

Else

sendSessionManager(timeoutIndication); return;

Figure 4.11. The steps performed to find a suitable service by the service agent

55

agent simply extracts the route (i.e., the sequence of hosts that forwarded this service

instance at the time of announcement flooding) from the corresponding service table

entry and inserts it into the hostOnRoute field of the outgoing SeMA packet.

This simplifying approach to routing has its disadvantages on the other hand.

The route information found at the local service table may be out-of-date because of

the highly varying node mobility at the target environment. Routing agent is equipped

with some basic healing algorithms that try to heal a route on a SeMA packet that

is not valid anymore. These are given in Section 4.4.3.2. The service announcement

frequency on the ad hoc network has an important effect on routing performance in

this sense.

For the sake of bandwidth efficient routing process, routing agent maintains a

data structure called session cache. Routing agent records identifier parts of all packets

it has processed to this session cache. Session cache is maintained in FIFO manner

and its size may be determined according to the memory space available. Routing

agent uses the session cache to immediately discard the packets that it has previously

processed. Furthermore, if the routing agent forwards a terminate packet for a given

session between two hosts, it invalidates the entries (i.e., mark them) corresponding

to this session to avoid further processing of any zombie packets (belonging to this

terminated session) travelling the network. Space dedicated as the session cache is to

be determined at a size that is small enough to catch the double processing of some

flooded data packets. Having larger sized session cache will do no harm in that sense

but will slow down the session cache search procedure. The session cache with sample

entries is illustrated in Figure 4.12.

As the forwarder of packets to their destinations, routing agent is the place where

communication agent delivers all data packets it receives. If routing agent has not seen

the new arrived data packet, it is first placed into the session cache, and discarded

otherwise. If the packet is not destined for this host, routing agent locates its own

instance from the source route and extracts the next hop id from the available source

route. Packet is then forwarded to this next hop via the communication agent. If this

56

�����������	�

������

� � � ��	 	

��	 	
��

�

��� ��� ��

� �� � ��

��	 	
��

� ��
� �

����������������	 	
 � �

 ��

����� ���	��
 � � � � �

� �
 � � �
 ��

����� ���	��

� �� �

� ��� �

�

�

�
� �	 �� � �

� � � � �� � �� �

� � �� � �� �� �

� � � � �� � �� �

� � �� � �! �� �

� � � � �� � �� �

� � �� � �� � �! !

Figure 4.12. Session cache with sample entries

host is the intended recipient of the packet, the packet is passed to the session manager

for further processing. Exceptions of this process is the unavailability of the next hop

specified in the source route of the packet. The route loss and healing is explained in

the next section.

4.4.3.2. Route Loss and Healing. Whenever a unicast packet is given to the underlying

data link layer for transmission by the communication agent, it is probable that the

next hop will not be in the wireless transmission range of the host transmitting the

packet. Additionally, the next hop may be in the transmission range of the transmitting

host, but transmission may be unsuccessful because of various reasons, such as fading,

interference related bit errors etc. For those cases, the data link layer returns a link

failure indication (as assumed in Section 4.1), so that SeMA can act accordingly.

If a link failure indication is received for a SeMA packet, routing agent performs

a local search on its service table to extract an alternative valid minimum hop source

route towards the destination of the failed packet. Next hop available in this new route,

obviously, needs to be different from the one that has been previously tried. Routing

agent retries this route healing SEMARP LOST ROUTE HEAL TRY LIMIT times

and keep track of status of a packet from its respective session cache entry (Heal Count

field in Figure 4.12). This behavior of SeMA routing is again different from DSR, where

57

source of the respective lost packet is informed of route loss by means of route error

messages (route salvaging is a similar optimization defined in DSR, but source host is

notified of loss anyhow).

If packet has not been successfully forwarded to the next hop along the source

route after SEMARP LOST ROUTE HEAL TRY LIMIT times healing, or no suitable

route alternatives are found from the local service table, routing agent switches to

broadcasting the packet by setting its lost flag. Any routing agent that receives this

lost packet processes it even if its not among the hosts on the source route. If the

routing agent that received the lost packet finds itself on the source route, the lost

flag of packet is reset and routing switches to the normal procedure. Otherwise the

same healing procedure is applied for the packet. Further broadcast of the packet on

failure is a protocol parameter and currently flooding is not continued after the first

broadcast. The probability of route healing is higher if broadcast is continued but it

will cause more contention on the network, especially if the network is heavily loaded.

Routing and healing algorithm for a given SeMA packet is summarized in Figure 4.13.

Route loss actions and corresponding healing procedures are only taken for data

and terminate packets. Other packets are broadcast type packets (announcement and

lookup) or lookup reply packets and their loss is not vital in the sense that alternatives

of the packets are expected to arrive from different routes anyway.

Routing agent is the place where different alternative routing approaches are

possible to implement. For example, specific to a given service class, routing agent

may try to select the route in a different manner from its inventory (i.e., service table

entries) such as the minimum hop including or maximum battery capacity holding etc.

4.4.4. Communication Agent

Communication agent functions as a simple wrapper to the primitives provided by

underlying data link layer. Data link primitives are abstracted away from the entities

58

of SeMA by the communication agent.

Communication agent dispatches the arriving data link frames as SeMA packets

and delivers them accordingly. Announcement, lookup and lookup reply packets are

routeSeMAPacket(SeMA Packet packetToBeProcessed)

SeMA ServiceTableEntry stEntry;

SeMA HostInstance hostOnRoute;

If (!packetHasSeenBefore(&packetToBeProcessed))

/* First, record the packet to seen list */

insertSessionCache(&packetToBeProcesed.header);

If (!packetToBeProcessed.lostFlag)

/* A regular SeMA packet to be routed */

forall packetToBeProcessed.hostsOnRouteXML[i]

parseHostXML(packetToBeProcessed.hostsOnRouteXML[i], &hostOnRoute);

If (hostOnRoute.hostId == myInstance.hostId)

/* Here is my address, let us extract the next hop */

parseHostXML(packetToBeProcessed.hostsOnRouteXML[i+1], &hostOnRoute);

Set nextHopId = hostOnRoute.hostId;

sendCommunicationAgent(&packetToBeProcessed, nextHopId);

return;

Else

/* This packet has lost its way towards destination */

If (!packetHasBeenHealedEnough(&packetToBeProcesed.header))

/* Let us look an alternative route entry for this lost packet */

forall stEntry

If (stEntry.provider.hostId == packetToBeProcesed.destinationHostId)

updateSourceRoute(&packetToBeProcesed, stEntry.index);

Set packetHealed = TRUE;

sendCommunicationAgent(&packetToBeProcessed, newNextHopId);

return;

Else

/* Packet has been healed SEMARP LOST ROUTE HEAL TRY LIMIT times, switch to flooding */

Set packetToBeProcessed.lostFlag = TRUE;

sendCommunicationAgent(&packetToBeProcessed, BROADCAST);

return;

Else

This packet has been seen before */

Set packetToBeDiscarded = TRUE;

return;

Figure 4.13. The steps performed to route a SeMA packet

59

delivered to service agent, data and terminate packets are delivered to the routing

agent of the host by the communication agent.

Although SeMA packets are currently not fragmented to be carried in more than

one data link layer frame, communication agent is the place to realize this feature if it

is desired in the future.

4.5. Illustrative Examples

In this section, some illustrative examples are presented to clarify basics of the

algorithms given in the preceding sections. Examples are given on a sample ad hoc

network topology, composed of nodes running proposed protocol stack.

In Figure 4.14, service announcement procedure is illustrated. There are four

nodes in the example with their wireless transmission ranges indicated with circles

bearing their host identifiers. For this example, Node 1 provides a printer service

for the network and starts to announce this service as illustrated in Part (a) of Fig-

ure 4.14. The announcement packet is only received by the Node 2 since it is the

only node within the transmission range of Node 1. Upon receiving the announce-

ment packet from Node 1, Node 2 records availability of the new service and starts

to relay the announcement by broadcasting the announcement. Before relaying the

announcement, Node 2 inserts its own host instance to the source route of the packet.

The announcement of Node 2 is received by Node 1, Node 3 and Node 4 as illustrated

in the Part (b) of Figure 4.14. Node 1 immediately discards the received announce-

ment since it carries the service provided by itself. Node 3 and Node 4 record this

announcement as a service that is reachable via Node 2 and offered by Node 1. As

Node 3 and Node 4 further relay the received announcement (Part (c) of Figure 4.14),

Node 2 receives two announcements that should be discarded. This is because Node 2

already appears on the source route field of the announcements received from Node 3

and Node 4. However, Node 3 records the announcement received from Node 4 and

Node 4 records the announcement received from Node 3. This creates two alternative

entries at Node 3 and Node 4 regarding the same service instance of Node 1. If the

60

�

�

�

�

�

� �

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

� �

�

�

�

��� ��� �	�

Figure 4.14. Service announcement procedure in a sample network

SEMARP SERVICE TABLE ADDING HOP THRESHOLD parameter of the proto-

col is set to zero, Node 3 would not record the announcement received from Node 4

since there is already an entry with smaller hop count. After these steps of the ser-

vice announcement, service tables of the nodes are found as illustrated in Figure 4.15.

Details of service announcement procedure are given in Section 4.4.2.

Just after the announcement procedure is over, two more nodes (Node 5 and

Node 6) join to the sample network topology as illustrated in Part (a) of Figure 4.16.

As soon as Node 6 needs a printer service, a lookup procedure has to be started, since

Node 6 has not yet heard of an announcement. The first lookup message is broadcast

with expanding ring diameter being equal to one. Only Node 5 receives this lookup

request as seen in Part (b) of Figure 4.16. Node 5 has no suitable instance to reply to

this request and can not further relay the message (because of the TTL value). After

SEMARP SERVICE LOOKUP EXPANDRING TIMEOUT amount of time without

a positive reply, Node 6 re-initiates the lookup for the second time with the expanding

ring diameter being equal to two. This time, lookup request packet reaches to Node 3

which then replies with a lookup reply packet including the service instance recorded

in its service table with index number (1). Node 5 takes its role in relaying the unicast

lookup reply packet to Node 6. Finally, service table of the Node 6 is populated with

an entry as illustrated in Figure 4.17.

61

After the announcement and lookup phases, an application on Node 3 initiates a

service fetch for a printer and immediately finds the printer on Node 1 (from its local

service table). The returned service table index for this application is (1), since it is the

minimum hop path via Node 2. The application starts the session and SeMA packets

are routed through Node 2 towards the destination Node 1 as illustrated in Part (a)

���������	
����
������

���������	
��	��
 � � ����� �
���	
��	���� ��� �� ��� ��

���������	
���
���	���
�

������� �� � � �� �
����
�� �� �
�	� ��� �� � � �� �

������� �� � � �� �
����
�� ��������
�� ����� �� � � �� �

����������

����������

��� � ���� � ���� � �� �
� �

��������
����� ��� ���
! ���
��
" �
� # #
�$ % ���
����� �

����������& ���� �������
' �('
�

���������������& � ���) �� ��� �
* + *
�� # � �, �# # ��& � ���) �� �

�����������

���� � ���� � ���

� 	���

� �������

� 	���

� � � ������ 	

 � � ����� �
���	
��	��
�� �

� � �� ��� �	� �� �
�

� ��

�	� ��

�

� � �

 � ! 	�

"

���������	
����
������

���������	
��	��
 � � ����� �
���	
��	���� ��� �� ��� ��

���������	
���
���	���
�

������� �� � � �� �
����
�� �� �
�	� ��� �� � � �� �

������� �� � � �� �
����
�� ��������
�� ����� �� � � �� �

����������

����������

��� � ���� � ���� � �� �
� �

��������
����� ��� ���
! ���
��
" �
� # #
�$ % ���
����� �

����������& ���� �������
' �('
�

���������������& � ���) �� ��� �
* + *
�� # � �, �# # ��& � ���) �� �

�����������

���� � ���� � ���

� 	���

� �������

� 	���

� � � ������ 	

 � � ����� �
���	
��	��
�� �

� � �� ��� �	� �� �
�

#""$ %"#%�&

�$ %$ "%' (%"�

#""$ %"#%�&

�& %$ "%' (%"�

�	� ��

�

� � �

 � ! 	�

"

���������	
����
������

���������	
��	��
 � � ����� �
���	
��	���� ��� �� ��� ��

���������	
���
���	���
�

������� �� � � �� �
����
�� �� �
�	� ��� �� � � �� �

������� �� � � �� �
����
�� ��������
�� ����� �� � � �� �

����������

����������

��� � ���� � ���� � �� �
� �

��������
����� ��� ���
! ���
��
" �
� # #
�$ % ���
����� �

����������& ���� �������
' �('
�

���������������& � ���) �� ��� �
* + *
�� # � �, �# # ��& � ���) �� �

�����������

���� � ���� � ���

� 	���

� �������

� 	���

� � � ������ 	

 � � ����� �
���	
��	��
�� �

� � �� ��� �	� �� �
�

#""$ %"#%�&

�$ %$ �%"�%"$
#""$ %"#%�&

�& %$ �%"�%"$

�	� ��

�

� � �

 � ! 	�

�

� ��

���������	
���
���	���
�

������� �� � � �� �
����
�� �� �
�	� ��� �� � � �� �

������� �� � � �� �
����
�� ��������
�� ����� �� � � �� �

����������

����������

��� � ���� � ���� � �� �
� �

��������
����� ��� ���
! ���
��
" �
� # #
�$ % ���
����� �

����������& ���� �������
' �('
�

���������������& � ���) �� ��� �
* + *
�� # � �, �# # ��& � ���) �� �

�����������

���� � ���� � ���

#""$ %"#%�&

�$ %$ �%�& %��
#""$ %"#%�&

�& %$ �%�& %��
#

#""$ %"#%�&

�& %$ "%') %& '

��� � ���� � ���� � �� �
- �

�����������

���� � ���� � ���

��� � ���� � ���� � �� �
- �

�����������

���� � ���� � ���

��� � ���� � ���� � �� �
% �

�����������

���� � ���� � ���

� ��

���������	
����
������

���������	
��	��
 � � ����� �
���	
��	���� ��� �� ��� ��

���������	
���
���	���
�

������� �� � � �� �
����
�� �� �
�	� ��� �� � � �� �

������� �� � � �� �
����
�� ��������
�� ����� �� � � �� �

����������

����������

��� � ���� � ���� � �� �
� �

��������
����� ��� ���
! ���
��
" �
� # #
�$ % ���
����� �

����������& ���� �������
' �('
�

���������������& � ���) �� ��� �
* + *
�� # � �, �# # ��& � ���) �� �

�����������

���� � ���� � ���

� 	���

� �������

� 	���

� � � ������ 	

 � � ����� �
���	
��	��
�� �

� � �� ��� �	� �� �
�

#""$ %"#%�&

�$ %$ �%"�%"'
#""$ %"#%�&

�& %$ �%"�%"'

�	� ��

�

� � �

 � ! 	�

�

���������	
���
���	���
�

������� �� � � �� �
����
�� �� �
�	� ��� �� � � �� �

������� �� � � �� �
����
�� ��������
�� ����� �� � � �� �

����������

����������

��� � ���� � ���� � �� �
� �

��������
����� ��� ���
! ���
��
" �
� # #
�$ % ���
����� �

����������& ���� �������
' �('
�

���������������& � ���) �� ��� �
* + *
�� # � �, �# # ��& � ���) �� �

�����������

���� � ���� � ���

#""$ %"#%�&

�$ %$ �%�& %�*
#""$ %"#%�&

�& %$ �%�& %�*
#

��� � ���� � ���� � �� �
- �

�����������

���� � ���� � ���

��� � ���� � ���� � �� �
- �

�����������

���� � ���� � ���

��� � ���� � ���� � �� �
$ �

�����������

���� � ���� � ���

Figure 4.15. Service tables of hosts after the announcement

62

�

�

�

�

�

� �

�

�

��� �	� �
�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

Figure 4.16. Service lookup procedure in a sample network

of the Figure 4.18. During the session, Node 3 starts to move towards the direction

indicated by the gray arrow in Figure 4.18 Part (a). When Node 3 arrives in its new

place, as shown in Part (b) of Figure 4.18, Node 2 is not reachable anymore. There-

fore Node 3 initiates the route healing process (after the link layer failure indication)

explained in Section 4.4.3.2. Finding the alternative entry for the same service from

the service table (See Figure 4.15 for the tables), Node 3 switches the route to include

Node 4 and then Node 2. While the new route is in effect, unfortunately, Node 2

goes out of battery and stops relaying packets towards Node 1. Having no other route

alternatives, Node 4 switches to flooding the remaining data packets. Luckily, Node 1

is now in the transmission range of Node 4 and it receives the flooded data packets.

���������	
����
������

���������	
��	��
 � � ����� �
���	
��	���� ��� �� ��� ��

���������	
���
���	���
�

������� �� � � �� �
����
�� �� �
�	� ��� �� � � �� �

������� �� � � �� �
����
�� ��������
�� ����� �� � � �� �

����������

����������

��� � ���� � ���� � �� �
� �

��������
����� ��� ���
! ���
��
" �
� # #
�$ % ���
����� �

����������& ���� �������
' �('
�

���������������& � ���) �� ��� �
* + *
�� # � �, �# # ��& � ���) �� �

�����������

���� � ���� � ���

� 	���

� �������

� 	���

� � � ������ 	

 � � ����� �
���	
��	��
�� �

� � �� ��� �	� �� �
�

� � � � � � !"

!� �# " � � �

� � � � � � !"

!" �� � � � !

�	� ��

!

� � �

$ � % 	�

�

��� � ���� � ���� � �� �
- �

�����������

���� � ���� � ���

��� � ���� � ���� � �� �
$ �

�����������

���� � ���� � ���

��� � ���� � ���� � �� �
. �

�����������

���� � ���� � ���

Figure 4.17. Service table of Node 6 after lookup reply procedure

63

�

�

�

�

�

�

�

�

��� ���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�	�

Figure 4.18. SeMA packet routing procedure in a sample network

Therefore, session continues and finishes intact. Details of routing and route healing

are given in Section 4.4.3.

64

5. IMPLEMENTATION OF SIMULATION

Simulation study of the proposed protocol is conducted using GloMoSim (Global

Mobile Information Systems Simulation Library), a simulation library developed at

UCLA Parallel Computing Laboratory [68]. GloMoSim has been built to provide a

scalable simulation environment with support for wireless networks (wired network

support was planned as a future extension) using a layered approach similar to ‘OSI

seven layer network architecture’. Standard APIs have been used between those layers

using parallel discrete event simulation capability provided by Parsec [69], which is a

general purpose C-based simulation language for sequential and parallel execution of

discrete event simulation models. An enhanced commercial version of the GloMoSim

is developed and marketed by Scalable Network Technologies Inc. as Qualnet [70].

Possible simulator software alternatives that could have been used in simulations

of the proposed protocol were OPNET Modeler [71] from OPNET Technologies Inc.,

and ns-2 [72] (developed in collaboration with many institutions and researchers). OP-

NET was not preferred because of licensing issues (i.e., it was not available free of

charge for research institutions). Although ns-2 is being widely used for wireless net-

work simulations in the research communities, it has not been preferred because of the

following reasons. The effort involved in learning and using the simulator is compara-

bly high, and ns-2 is more useful if lower layer protocol statistics are of interest. Ns-2

has originally been developed to be a wired network simulator and later extended to

include wireless networking support. Additionally, feasibility of using ns-2 diminishes

as the scale of the network under simulation is increased (in terms of the size of the

area, the number of nodes, and the amount of application traffic generated).

Following sections provide a brief introduction to the details of the design of the

GloMoSim and explain the newly added components to the simulator.

65

����������	
����
���	� ����������	
�
���

���	�����
� ����
� ���
�
���
��	����

��
� ����
� ��
�
�����

��

�����	�

����
�
����

�
�������

���
� ����
� ����

�� �

�����
��	�

����
�
����

�
������� ��!
�
����
��	����

���"

� ����
� �������

��
�
�����
�
���

����������	
���
� �������#

���"

����
���	� �����
������
�
�
���

���������� 	
���
�������

 �

$�	��

����

��	����
�����	�

�
��

�
��

�����	�
��
	�

�
�%��

��
	�
�
��
��""&
��
	�

�
��
�
����	
��	��
�

�
��
����������	�

��
� ���	�

��������

����

�	 �����

�����
��	�

�����������

����
��

��

������
��

�����	���
�

Figure 5.1. GloMoSim layers and implemented SeMA stack

5.1. Structure of the GloMoSim

GloMoSim is composed of a set of layers, each with its own API. Models of

protocols at one layer interact with those at a lower (or higher) layer only via these

APIs. This allows easy integration of new models into the simulator by different people.

Decomposition of those layers is illustrated in Figure 5.1. The addition of proposed

protocol to the original structure is emphasized with gray shaded boxes in the figure.

An example to API calls is given in Figure 5.2. Given example calls are used to handle

data packets between network and MAC layers. Using the first call in Figure 5.2, IP

protocol requests a network layer datagram to be delivered in a MAC layer frame.

The second call is made by the MAC layer to inform the network layer about a new

datagram arrival.

66

void NetworkIpSendPacketToMacLayer(GlomoNode* node, Message* msg,

InterfaceIdType interfaceId, NODE ADDR nextHop)

void NetworkIpReceivePacketFromMacLayer(GlomoNode* node, Message* msg,

NODE ADDR lastHopAddress)

Figure 5.2. An example to API calls between layers in GloMoSim

GloMoSim simulation engine is constructed using Parsec, which has a message

based approach to discrete-event simulation. In Parsec, physical processes are modelled

by simulation objects called entities. GloMoSim uses Parsec entities to be the partitions

of the terrain to be simulated. Although current distribution of GloMoSim (version

2.02) does not support partitioning, the parallel execution feature provided by Parsec

may be used to distribute simulation of terrain partitions to different computers in the

future. This would allow GloMoSim to scale to a considerably high number of nodes in

simulations. Events of the simulation are represented by transmission of time-stamped

messages within or among corresponding entities.

An initialization entity, called driver, exists in GloMoSim and is functionally

similar to the main function of a program written in C. Parsec calls and entities are

converted to valid C codes by the Parsec compiler (pcc), before all the simulation code

is compiled with a generic C compiler (e.g., gcc for Linux). In GloMoSim, parsec source

files have filename extensions of .pc before they are compiled.

There are many wireless protocols and models supported by GloMoSim. Many

of them are implemented by GloMoSim development team and the rest comes from

various sources (mainly from the developers of that specific protocol). Those currently

available protocols and models for GloMoSim are listed below:

• Application: Telnet and FTP (both using TCPLIB), CBR (Constant Bit Rate),

HTTP (using pre-collected behaviors), Web Phone, Web Caching1

• Transport: TCP (FreeBSD), NS TCP (Tahoe), UDP, DBS satellite models

• Multicast Routing: ODMRP, CAMP1, AMRIS1, AMRoute1, AST1, DVMRP1

• Unicast Routing: Distributed Bellman-Ford, Flooding, Fisheye, AODV, DSR,

67

Table 5.1. GloMosim directory structure

Directory Name Contents

(relative)

/bin simulation executable, input and output files

/doc includes documentation

/include common include files

/main contains the basic framework design

/scenarios contains various sample configuration topologies

/java gui contains code for java visualization tool

/tcplib contains TCP application communication patterns

/radio contains code for the physical layer

/mac contains code for the MAC layer

/network contains code for the network layer

/transport contains code for the transport layer

/application contains code for the application layer

DSDV, OSPF, WRP, LAR, NS-DSDV, DREAM1, MMWN1

• MAC: CSMA, FAMA, MACA, IEEE 802.11, MACA-W1

• Radio: DSSS Radio with or without capturing feature

• Propagation: Free Space, Rayleigh, Ricean, 2-Ray, SIRCIM, External Path-

Loss Trace Files

• Mobility: Random Drunken, Random Waypoint, ECRV1, Group Mobility1, Ex-

ternal Mobility Trace Files

5.1.1. Organization of Directories

GloMoSim distribution reflects the layered structure of the simulator. Table 5.1

gives the directories and their content classifications as they are found in the distribu-

tion. In the table and for the rest of the text, directory and filenames are given relative

to the GloMoSim installation path, and the name of the main installation directory is

always omitted.

1Not implemented by the simulator development team

68

. . . from the file include/api.h

struct glomo node str {

...

NODE ADDR nodeAddr; /* the network address of the node */

...

int numberRadios;

int numberInterfaces;

GlomoProp *propData; /* propagation information */

GlomoRadio* radioData[MAX NUM RADIOS]; /* radio layer information */

GlomoMac* macData[MAX NUM INTERFACES]; /* mac layer information */

GlomoNetwork networkData; /* network layer information */

GlomoTransport transportData; /* transport layer information */

GlomoApp appData; /* application layer information */

...

}GlomoNode;

Figure 5.3. An excerpt from GlomoNode structure definition

5.1.2. Representation of Layers

An important data structure in GloMoSim is GlomoNode, which represents hosts

in the network. Rest of the protocol and model related structures (other than some

global structures for simulation maintenance) are embedded in GlomoNode structure.

This structure is organized to include each node’s own stack of protocols (its param-

eters and statistics). The nodeAddr field of the structure constitutes the unique node

identifier, used throughout the simulation code to refer to a specific node instance.

An excerpt from the structure is given in Figure 5.3. Each layer in the GlomoNode

structure has its own data structure (e.g., GlomoMac or GlomoNetwork) to repre-

sent corresponding protocols. To provide a further insight, the GlomoMac structure

in the GlomoNode definition is expanded in Figure 5.4. Such layer structures usually

home pointers to the structures of specific protocols, layer statistics and details of layer

mechanisms.

5.1.3. Messages and Events

In GloMoSim, messages travel between layers of a given node or between layers of

different nodes. In terms of their functions, following categorization is true for messages

69

. . . from the file include/mac.h

struct glomo mac str {

MAC PROTOCOL macProtocol;

int interfaceIndex;

int bandwidth;

int radioNumber;

BOOL macStats;

BOOL promiscuousMode;

clocktype propDelay;

void *macVar;

}GlomoMac;

Figure 5.4. An excerpt from GlomoMac structure definition

in GloMoSim:

• Non-Packet Messages: Messages that are used to indicate events. They are

used between layers (e.g., channel sensed busy message from radio to MAC layer)

and within layers (e.g., timers)

• Packet Messages: Actual packets (e.g., IP datagrams) that eventually will

appear on the wireless medium.

In order to create a message, its parameters should be set accordingly. Parameters of

a message are listed as:

• Destination: Destination node ID, target layer in the destination node, protocol

at that layer (if applicable), interface for that protocol (if applicable)

• Event Type: A unique event identifier

• Message Info: A customizable area to carry requested information

• Payload: Actual data that the message has to carry

• Current Header Position: A pointer to the current header of the message

To clarify the use of messages in GloMoSim, a non-packet message example (a timer

event within MAC layer) and a packet message example (a MAC layer frame to radio

layer) will be given (assuming IEEE 802.11 protocol is the objective). Although ex-

amples are selected from 802.11 protocol of MAC layer, the same methods of message

70

...

/* First, a message variable is declared */

Message *newMsg;

/* Then, its owner node, destination layer, destination protocol and event type is set */

newMsg = GLOMO MsgAlloc(node, GLOMO MAC LAYER, MAC PROTOCOL 802 11, MSG MAC TimerExpired);

/* Here, MAC interface of the message is set */

GLOMO MsgSetInstanceId(newMsg, M802->myGlomoMac->interfaceIndex);

/* A custom size info space is reserved into the message */

GLOMO MsgInfoAlloc(node, newMsg, sizeof(M802->timerSequenceNumber));

/* Then the reserved info space is filled with the desired custom information */

((int)(newMsg->info)) = M802->timerSequenceNumber;

/* Finally the message is scheduled to be sent to the destination node

after a timerDelay amount of time */

GLOMO MsgSend(node, newMsg, timerDelay);

...

Figure 5.5. Scheduling a self-timer event within the MAC layer

processing are applicable for the layers above or below.

Scheduling a timer event within the MAC Layer is illustrated in Figure 5.5.

A message variable of type Message is declared and its parameters are set using

GLOMO MsgAlloc and GLOMO MsgSetInstanceId calls. Then a special information

that will be used when the timer expires is embedded into the info field of the message.

Finally the timer message is scheduled for delivery by using GLOMO MsgSend call.

The timerDelay parameter specified in the call determines the time that the timer will

go off, meaning that the destination layer (same layer for this example) is honored with

the message. For this simple timer message example, payload portion of the message is

not allocated and used. In order to handle the event scheduled in Figure 5.5, MAC layer

event handling code should be expecting an event of type MSG MAC TimerExpired.

Event handling routines for each layer are registered to GloMoSim and whenever there

is a message to be processed GLOMO CallLayer function extracts the target layer from

the message. Then, the target layer event handling routine is triggered. A code snippet

from the 802.11 protocol event handling routine is given in Figure 5.6 to show how this

71

void Mac802 11Layer(GlomoNode *node, int interfaceIndex, Message *msg) {

...

switch (msg->eventType) {

...

case MSG MAC TimerExpired:

Mac802 11HandleTimeout(node, M802);

case MSG MAC TimerExpired PCF:

Mac802 11HandleTimeout PCF(node, M802);

...

}

GLOMO MsgFree(node, msg);

...

}

Figure 5.6. Handling a timer event within the MAC layer

processing is done.

Similarly, preparing a MAC frame (802.11 frame for the example) out of the node

is illustrated in Figure 5.7. A message is allocated and expanded to be a packet by

GLOMO MsgPacketAlloc call. After the MAC protocol header is added to the packet,

it is sent out of the layer destined to the radio layer via StartTransmittingPacket call.

Handling of packet messages are realized in the corresponding layers packet handling

functions. Upon reception from a packet from radio layer, for example, 802.11 protocol

packet handling routine Mac802 11ReceivePacketFromRadio is triggered for the further

handling of the arriving packet. An illustrative excerpt from this routine is given in

Figure 5.8.

Although it is possible to send any message to any node and any layer therein,

packet messages must follow the usual track through the layered design of the simu-

lation architecture. For example, under normal circumstances, network layer have to

interact with the API provided by the MAC layer to send out a datagram encapsulated

in a MAC frame. Therefore, the network layer must not use the calls that prepare a

MAC frame and send the message directly to the radio layer.

72

...

/* First, a message to hold the packet is allocated */

Message *pktToRadio = GLOMO MsgAlloc(node, 0, 0, 0);

/* Then, packet header information is prepared */

hdr.frameType = M802 11 DATA;

hdr.sourceAddr = node->nodeAddr;

hdr.destAddr = destAddr;

...

/* Here, a MAC frame is allocated into the packet and filled with information */

GLOMO MsgPacketAlloc(node, pktToRadio, topPacket->packetSize);

memcpy(pktToRadio->packet, topPacket->packet, topPacket->packetSize);

/* MAC frame header is allocated and prepared header is placed into */

GLOMO MsgAddHeader(node, pktToRadio, sizeof(M802 11FrameHdr));

memcpy(pktToRadio->packet, &hdr, sizeof(M802 11FrameHdr));

/* Then the packet is sent for transmission */

StartTransmittingPacket(node, M802, pktToRadio, M802 11 DIFS);

...

Figure 5.7. Preparing and sending a MAC frame to radio layer

5.1.4. Operation of Network Layer

Understanding GloMoSim network layer and its internal design is vital for two

important reasons. First, many of the protocols available for ad hoc networks deal with

the routing of packets in the network. GloMoSim network layer is the place where those

routing protocols are invoked to function. Second and the more important reason is

related to our protocol proposal. The simulation code of the protocol components is

attached to the network layer and does not use any of the existing protocols above the

network layer.

Currently, GloMoSim has only one option as a network layer protocol, which is the

well-known Internet Protocol (IP). In the simulation, the proposed ad hoc networking

protocol receives the packet delivery service from the network layer, not directly from

a data link and MAC layer protocol (i.e., IEEE 802.11). The basic motivation behind

this is to keep simulation code independent from the underlying MAC layer protocol

73

void Mac802 11ReceivePacketFromRadio(GlomoNode *node, Message *msg) {

...

if (hdr->destAddr == node->nodeAddr)

switch (hdr->frameType) {

case M802 11 RTS:

...

case M802 11 DATA:

...

}

else if (hdr->destAddr == ANY DEST)

switch (hdr->frameType) {

case M802 11 DATA:

Mac802 11ProcessFrame(node, M802, msg);

...

}

...

}

Figure 5.8. Handling a MAC frame from radio interface

type. By using network layer primitives for packet delivery purposes, the simulation

code needs no change if different MAC layer protocols are to be tested for performance.

It should be emphasized that, other than being a simple payload carrier, IP protocol is

not used for any other purposes, such as routing. In this sense, using IP as the protocol

packet carrier does not contradict with ‘an underlying data link protocol is sufficient’

assumption, given in Section 4.1.

Figure 5.9 provides an overall look to the GloMoSim network layer and the API

between the neighboring layers. Figure summarizes the API calls that invoke each layer

in both directions (i.e., a packet arrival from MAC layer, and a packet departure from

transport layer). Basically, network layer processes arriving frames from MAC layer to

construct complete IP datagrams. According to the IP protocol number supplied in the

datagram (defined IP protocol numbers are found on include/nwcommon.h), delivery

is made to the correct upper transport layer handling function (currently, UDP or

TCP). If the arriving IP datagram is not destined for the host that is processing the

packet, a routing action is taken. There are three possibilities in routing an IP packet.

The node under consideration may have a registered routing function, meaning that a

74

 transport/udp.pc:

 TransportUdpLayer()

transport/tcp.pc:

 TransportTcpLayer()

 network/nwip.pc:

NetworkIpReceivePacketFromMacLayer()

Transport Layer

Network Layer

MAC Layer

network/nwip.pc:

NetworkIpSendPacketToMacLayer
()

network/nwip.pc:

NetworkIpSendPacketToMacLayer()

network/nwip.pc:

SendToTcp
()

network/nwip.pc:

SendToTcp
()

network/nwip.pc:

SendT
oUdp()

network/nwip.pc:

SendToUdp()

UDP
 TCP

NetworkIpSendPacketToMacLayer

network/nwip.pc:

NetworkIpSendRawGlomoMessageWithDelay()

network/nwip.pc:

SendToTcp
()

mac/802_11.pc:

Mac802_11ProcessFrame()

 network/nwip.pc:

NetworkIpLayer()

Figure 5.9. GloMoSim network layer and its API to neighboring layers

routing scheme has been selected in simulation configuration file such as DSR, AODV

etc. Then this IP packet is given to the registered protocol routing function and the

value from this routing function is checked. If routing has been done, no further action

is taken. If routing could not be done by the protocol routing function, or the node has

no specified routing protocol, the packet is checked to see if it has an IP source route on

the IP options field. If a source route is found, the standard IP source routing is done

for the packet (i.e., the next hop towards destination is extracted and the packet is

forwarded along the destination via this next node). Otherwise, the routing is realized

according to the static IP routing table kept at the node (if an entry is found for the

destination). The operation of network layer is given in Figure 5.10 as a flowchart.

Design of the implemented protocol elements in the simulation is closely related

to the operation of network layer. Communication Agent of the protocol acts like a

registered routing protocol and intercepts the protocol packets that travels in IP data-

grams, if the node is configured to run the proposed ad hoc networking protocol. After

intercepting protocol packets at the network layer, they are processed and forwarded

to other agents as explained in Chapter 4, without further interaction with existing

components of the simulator in upper layers (e.g UDP, TCP, transport).

75

This packet

is for me?

The p
acket
is

f
ragmented
?

No

Yes

Yes
The datagram

is complete?

No

No

Yes
 Send the data to the appropriate

protocol of the upper layer

(Transport layer)

by
GLOMO_MsgSend()

End process

Reassembly

Determine which IP protocol the packet used

Receive packet from MAC Layer

Route the

packet to

another node

TTL field

reaches 0?

Drop the packet

Yes

Dest. is

broadcast

address?

No
 Yes

Route the packet by

the routing protocol

Yes
 No

No

The packet

was routed?

Node has

a speci
fied routing

protocol?

Yes

End process

IP header has

source route?

No

Yes

Extract the next

address from

source route

Extract the next

address from

forwarding

lookup table

No

The IP

packet is

too large?

Fragment

the packet

Send the packet

to MAC layer

No

Figure 5.10. GloMoSim network layer operation

5.1.5. Addition of a New Protocol

In order to add a new protocol or layer to the GloMoSim, a main data structure

and three group of functions are to be implemented and interfaced to the currently

available code skeleton.

First, the data structure for the specific protocol should be implemented. This

structure should be designed to hold internal data structures of the protocol, states of

the protocol and statistics of the protocol. Upon arrival of a message, the node must

be able to determine what to do by only looking at the message and current snapshot

of this protocol data structure.

An initialization function is necessary to prepare the protocol data structure

before the simulation starts (e.g., to reset algorithm counters or to initialize statistics

76

data structures). This initialization function should be interfaced into the necessary

layer handler of the available simulation code so that it is invoked (from main/glomo.pc)

every time the simulation starts.

Event handling functions are the most important functions that have to be imple-

mented. These group of functions will act upon arrival of various events (e.g protocol

timers, lower or upper layer messages) and packets. Algorithms of the added proto-

col should be implemented in the scope of these functions. In general, two of those

functions, main event handler and main packet handler are to be interfaced into the

simulation code of the appropriate layer.

A finalization function is also necessary for every newly implemented protocol.

Finalization function collects the statistical information kept at the protocol main data

structure, processes and outputs them to the main statistic output file (glomo.stat).

Finalization functions for all protocols are invoked at the end of the simulation in

the same way of the initialization functions. Therefore the implemented finalization

function must also be interfaced into the available simulation code.

To ease the job of implementing new protocols into the simulation software, empty

protocol templates are prepared to be filled in the current distribution of GloMoSim.

In the directories of appropriate layers, files starting with ‘user ’ can be used for this

purpose (e.g., application/user application.pc, network/user nwip.pc). The template

functions residing in those files have already been interfaced to the necessary places in

the simulation software and are very useful in understanding the simulation software

mechanics.

5.2. Implementation of Proposed Protocol Simulation

The mechanisms provided in Chapter 4 are implemented and integrated into the

simulation software, keeping the proposed structural design as much as possible. The

integration of components into the GloMoSim layered stack is illustrated in Figure 5.1

on Page 65. Implemented protocol components are found in the files network/semarp.pc

77

Table 5.2. Results of different XML compression or encoding methods

Method File Size (in bytes)

Original (not processed) 227

gzip compression 207

XMill compression 218

Custom encoding 111

(communication, routing and service agents) and transport/semasm.pc (session man-

ager). There are also various application implementations residing in application di-

rectory with names sema cbr client.pc and sema cbr server.pc, sema vbr client.pc and

sema vbr server.pc, sema printer client.pc and sema printer server.pc. Applications

are covered in more detail in Section 5.3.

5.2.1. XML Processing

Efficient representation of plain text human readable XML instances is important

for the proposed protocol since those instances occupy space in protocol packets. For

the purpose, some of possible XML compression and encoding options have been tested

during simulation implementation. Tested methods are gzip compression [73], XMill

XML compression [74], and a custom encoding. The custom encoding was done by sim-

ply assigning one letter for each tag and attribute name (first letter of the original tag

and attribute, if not taken) appearing in the XML file (all white spaces are collapsed).

Therefore, a pre-determined encoding table is necessary for the purpose.

For a typical host XML instance, tested methods resulted in the file sizes that

are summarized in Table 5.2. It is obvious that compression methods performed poor

(since instances are quite small in file size) and custom encoding has been found suc-

cessful when compared to others. Therefore, instances are used encoded by this custom

encoding in the simulation implementations. Further discussion on efficient XML rep-

resentation is found in [75]. The original version and custom encoded version of a

typical host instance is given in Figure 5.11 to clarify the encoding process.

78

ORIGINAL VERSION

<mobileHost phyAddress="A3:55:4F:C3:64:B4">

<battery type="NiMh" maxCapacity="450">200< /battery>

<security level="high">

<publicKey id="00" algorithmName="RSA" length="32">110...00< /publicKey>

< /security>

< /mobileHost>

ENCODED VERSION

<m p="A3:55:4F:C3:64:B4"><b t="NiMh" m="450">200< /b>

<s l="high"><p id="00" a="RSA" l="32">110...00< /p>< /s>< /m>

Figure 5.11. A typical host XML instance and its encoded version

For an efficient simulation code, host and service XML instances are kept in

data structures named hostInstance and serviceInstance. They are defined in net-

work/semarp.h. When an XML parsing takes place, the result is kept in a suitable

instance structure to save time on future references to the same XML instance (XML

instances are usually referenced more than once). Therefore, all other data structures

keep XML instances as corresponding host or service structure instances. Whenever

necessary (XML version is needed to be put in protocol packets), an XML instance is

constructed back from its structure instance.

In the simulation implementation, XML validation and parsing has been done

by making use of Expat [76], which is an XML parser library written in C. Expat is

a stream-oriented parser in which the user registers handlers for various occurrences

the parser might find in the XML document (like start tags). Expat library source is

compiled with the simulator code and linked against the simulation object files. Expat

source files reside in expat directory of simulation software.

5.2.2. Communication Agent

Communication Agent of the protocol provides independence from the underlying

link layer connectivity primitives. Since the simulation design is made using IP data-

gram payloads as the protocol packet carrier (See Section 5.1.4 for this discussion), un-

79

. . . from the file network/nwip.pc

static void ProcessPacketForMeFromMac(GlomoNode *node, Message *msg){

...

NetworkIpRemoveIpHeader(node, msg, &srcAddr, &dstAddr, &prior, &IpProto, &ttl);

switch(IpProto) {

...

case IPPROTO UDP:

ipLayer->stats.numPacketsDeliveredToThisNode++;

ipLayer->stats.deliveredPacketTtlTotal += ttl;

SendToUdp(node, msg, prior, srcAddr, dstAddr);

case IPPROTO DSR:

RoutingDsrHandleProtocolPacket(node, msg, srcAddr, dstAddr, ttl);

case IPPROTO SEMARP:

RoutingSemarpHandleProtocolPacket(node, msg, srcAddr, dstAddr, ttl);

default:

NetworkIpUserHandleProtocolPacket(node, msg, IpProto, srcAddr, dstAddr, ttl);

}

...

}

Figure 5.12. The trap code intercepting SeMA packets from IP payloads

derlying data link layer independency has been achieved already. Therefore in the sim-

ulation, communication agent can be seen as the simple trap code in network/nwip.pc

which forward IP datagrams with protocol number ‘IPPROTO SEMARP ’ to the packet

handler in network/semarp.pc. From this point on, the packet is either in the hands

of routing agent or service agent. The code excerpt for this processing is given in

Figure 5.12.

5.2.3. Routing and Service Agents

Simulation of Routing Agent and Service Agent of the proposed protocol are im-

plemented in network/semarp.pc file. The event and packet handler functions residing

in the file are invoked from the network layer of the simulator upon arrival of an IP

packet with protocol number IPPROTO SEMARP or upon arrival of a non-packet

message (See Section 5.1.3 for message types) with one of the events (if destined for

routing or service agents) listed in Table 5.3. The events listed in table are presented

80

Table 5.3. Non-packet messages for protocol components

Name and Explanation of Messages

MSG NETWORK SEMARP EXPAND LOOKUP

Timer message to retry lookup with one step expanded ring

MSG NETWORK SEMAAPP TO SEMARP START LOOKUP

Indication from application to start looking for a service (to Service Agent)

MSG NETWORK SEMAAPP TO SEMARP OFFER

Indication from application to start offering service (to Service Agent)

MSG NETWORK SEMASM TO SEMARP ROUTE PACKET

Request for routing a SeMA packet (from Session Manager to Routing Agent)

MSG TRANSPORT SEMASM SERVE DEPARTURE QUEUE

Indication of processing need at the Session Manager Departure Buffer

MSG TRANSPORT SEMASM TIMEOUT SESSION

Timer message to process a session that is inactive for a long time

MSG TRANSPORT SEMARP TO SEMASM DELIVER PACKET

Indication of an unseen data packet (from Routing Agent to Session Manager)

MSG TRANSPORT SEMAAPP TO SEMASM START AUTO SESSSION

Indication from application of a non-interactive session data (to Session Manager)

MSG TRANSPORT SEMAAPP TO SEMASM MANUAL SESSSION

Indication from application of an interactive session data (to Session Manager)

MSG APP SEMARP TO SEMAAPP SERVICE STARTED

Confirmation from Service Agent of successful service offering start (to application)

MSG APP SEMARP TO SEMAAPP FOUND SERVICE

Confirmation from Service Agent of successful discovery of a service instance (to application)

MSG APP SEMARP TO SEMAAPP LOOKUP TIMEOUT

Indication from Service Agent of an unsuccessful discovery attempt (to application)

MSG APP SEMASM TO SEMAAPP QUEUE FINISH

Indication from Session Manager of a successful session data processing (to application)

MSG APP SEMASM TO SEMAAPP HAPPY END

Delivery from Session Manager of a new arriving session data (to application)

MSG APP SEMASM TO SEMAAPP TOSERVER DELIVERY

Indication from Session Manager of a successful remote data delivery (to application)

with their names, destination agents and intended meanings. These and other simula-

tion events are defined in include/structmsg.h file.

81

. . . from the file network/semarp.h

typedef struct glomo network semarp str {

BOOL semarpStatsEnabled;

int nextAvailableServiceTIndex;

int nextAvailableLookupSequenceNumber;

SEMARP ServiceTable serviceTable;

SEMARP Buffer buffer;

SEMARP SessionCache sessionCache;

SEMARP LookupCache lookupCache;

SEMARP Stats stats;

SEMARP HostInstance myInstance;

} GlomoRoutingSemarp;

Figure 5.13. Definition of the protocol main data structure

Within the implementation residing in network/semarp.h file, protocol main

data structure GlomoRoutingSemarp, protocol packet structure SEMARP Packet, and

statistics data structure SEMARP Stats are defined.

GlomoRoutingSemarp is a composite data structure including many other def-

initions of structures (e.g., service table, session cache etc.) that are explained in

Chapter 4. Definition of this main structure is given in Figure 5.13 and definitions of

other structures therein can be found in file network/semarp.h.

Protocol packet structure is explained in Section 4.3 and defined as illustrated

in Figure 5.14 for the simulations. The constants used in definitions also appear in

network/semarp.h file.

Statistics related to the particular routing agent and service agent of a node are

kept in SEMARP Stats structure. These variables are updated in various parts of the

routing and service agent codes, recording the effect of the current state of simulation.

The names of the statistics variables and their purposes are listed in Table 5.4. These

variables are printed out to the glomo.stat statistics output file at the end of the

simulation.

82

. . . from the file network/semarp.h

typedef struct {

SEMARP PacketType pktType;

NODE ADDR clientId;

long int sessionId;

long int sequenceNum;

BOOL lastFlag;

BOOL lostFlag;

clocktype twOfServiceInst;

short routeHopCount;

char hostsOnRouteXML[SEMARP MAX SOURCE ROUTE LENGTH][SEMARP MAX HOST XML LENGTH];

int payloadSize;

} SEMARP Packet Hdr;

typedef struct {

SEMARP Packet Hdr header;

char payload[SEMARP MAX PAYLOAD SIZE];

} SEMARP Packet;

Figure 5.14. Definition of the protocol packet

In the implementation residing in network/semarp.pc, functions that realize fol-

lowing actions are found: agent initialization/finalization, protocol event handling,

packet routing, link layer error handling, packet initiating, handling, relaying (an-

nouncement, lookup, lookup reply), service table management, session cache manage-

ment, route healing, XML generating and parsing, and timer management.

5.2.4. Session Manager

The session manager implementation of the simulation realizes the functionality

explained in Chapter 4 for non-interactive services. Implementation of session manager

is found in file transport/semasm.pc. Recalling Figure 5.1 on Page 65, routing agent

delivers clean and unseen protocol data packets to the session manager.

The event handler of the session manager is responsible from dealing with the

non-packet messages in Table 5.3 on Page 5.3 that are destined to the session-manager.

Basically, session manager simulation implementation homes functions to fragment and

83

Table 5.4. Routing and Service Agent statistics variables

Name and Purpose of the Statistics Variable

numServiceLookupsSent:

Total number of service lookup packets transmitted

numServiceLookupsReceived:

Total number of service lookup requests received

numServiceLookupsAnswered:

Total number of service lookup requests replied with a suitable service

numServiceLookupsRelayed:

Total number of service lookup packets relayed to other hosts

numServiceLookupRepliesReceived:

Total number of service lookup replies received

numServiceLookupRepliesRecorded:

Total number of service lookup replies recorded to service table

numServiceAnnouncementsSent:

Total number of service announcement packets transmitted

numServiceAnnouncementsReceived:

Total number of service announcement received

numServiceAnnouncementsRelayed:

Total number of service announcement relayed out

numServiceAnnouncementsRecorded:

Total number of service announcements recorded to service table

numSemaPacketsDelivered:

Total number of packets delivered to this node

numLinkBreaks:

Total number of packets lost due to wireless link unavailability

numHealedRoutes:

Total number of packets re-sent with updated routes

packetize the submitted data from the application, trigger service lookup and initiate

a non-interactive session. For these purposes, depending on the session type (whether

an inbound, or outbound session), an arrival or departure buffer is maintained. Main

data structure for the session manager is a session table. The important elements of a

session table entry are given in Figure 5.15.

84

. . . from the file transport/semasm.h

typedef struct SEMASM SessionTable Element {

long localSessionId;

long localApplicationId;

SEMASM SessionType sessionType;

SEMASM Departure Buffer departureBuffer;

SEMASM Arrival Buffer arrivalBuffer;

NODE ADDR remoteAddr;

int boundServiceTableIndex;

long remoteSessionId;

long lastPacketSequenceNo;

long numOfBytes;

long numOfPackets;

long numOfDuplicates;

long totalNumOfHops;

BOOL lastPacketArrived;

BOOL sessionActive;

BOOL sessionTimedOut;

...

struct SEMASM SessionTable Element *next;

} SEMASM SessionTable Entry;

Figure 5.15. An excerpt from session table definition

Via the statistics variable kept and the finalization function registered, session

manager has the ability to provide the following statistics to the user (per session

based):

• Number of received protocol packets from the routing agent

• Number of received protocol packets from the routing agent as lost (lost flag set)

• Number of received protocol packets from the routing agent as duplicate

• Total number of bytes submitted by the application for delivery

• Total number of bytes received for the session

• Session duration

• Average throughput

• Minimum, maximum and average end-to-end delay

• Session status (termination not received, incomplete, complete etc.)

85

5.3. Implemented Applications

To be used in the experiments for performance evaluation, applications that use

the proposed protocol are developed and implemented into GloMoSim. The exper-

iments designed with these applications are explained in Section 6.4. The realized

implementations fall into printing, CBR class, and VBR class application categories.

5.3.1. Printing Application

Printing application implementation consists of two components. They are printer

server (residing on sema printer server.pc file in application directory) and printer

client (residing on sema printer client.pc file in application directory).

Functionally, printer server offers the printing service that is specified in the simu-

lation application configuration input file (app.conf) via the ‘SEMA OFFER’ directive

(See Appendix B for a detailed example). The server then accepts sessions contain-

ing printing requests of clients that successfully discovered this printing service on the

host. Arrival of the complete non-interactive session data is assumed to be a successful

printing of a file.

Printer client uses the primitives provided to discover a printing service specified

in the application configuration input file. The required printer specification is given

with ‘SEMA ASK’ directive (as a service XML instance) and within this directive, there

exists also the name of the file that is to be printed. The filename is given relative

to the files/printer directory and the non-interactive session data size is determined

according to this given file to be printed. No retransmission facility is implemented in

the printer client application.

5.3.2. CBR Class Applications

CBR (Constant Bit Rate) applications offer a constant flow of data to the net-

work of concern. CBR class of applications are implemented with the idea of ‘more

86

applications belonging to this class may be integrated into the simulation in the future’

in mind. As a generic CBR application, current implementation allows users to specify

application session duration (in terms of time or item count), item sizes (in bytes)

and item inter-departure times. CBR application, similar to the printing application,

consists of a service offering CBR server (sema cbr server.pc) and a service initiating

CBR client (sema cbr client.pc).

As an application instance belonging to CBR application class, voice over SeMA

(VoSeMA) has also been implemented. Using this application, determined pairs of

hosts may run voice sessions that are either encoded in G.723.1 (high quality) or G.711

(medium quality). More information on voice encoding using these and other formats

are given in [77]. While converting codec rates to CBR units (payload size, packet

per second etc.), information provided in [78] is used and Voice Activity Detection

(VAD) has not been taken into account. These rate information can be found in file

sema cbr client.h. In the configuration file, VoSeMA client specifies which host to call

and the codec to be used. For a probable voice session to take place, the intended host

should have announced a VoSeMA service and the client should have discovered the

VoSeMA service on that intended host.

5.3.3. VBR Class Applications

VBR (Variable Bit Rate) applications offer data flow to the network in a time-

varying manner. Similar to CBR application implementation, VBR application imple-

mentation allows integration of different applications belonging to this class. Varying

data flow to the network at the VBR client implementation (residing in sema vbr client.pc

file) is achieved by setting application timers for each successive packet. VBR server

(residing in sema vbr server.pc file) is only responsible from offering the VBR service

and keeping statistics about the available remote parties.

The implemented application instance belonging to VBR class is a video stream-

ing service. Using this application, determined pairs of hosts may benefit from a video

stream service which actually transmit MPEG-4 encoded streams from Star Wars IV

87

movie. The traces are from Telecommunication Networks Group of Technical Uni-

versity of Berlin. Details of traces and encoding process are explained in [79]. The

trace file Terse StarWarsIV 10 14 18.dat is used to generate video traffic and can be

found in files/video directory. For a probable video streaming session to take place,

the intended host should have announced a videostream service and the client should

have discovered the service on that intended host. In the application configuration file,

video service client specifies the duration of streaming (up to sixty minutes of video

data is available in trace files), name of the stream data (i.e., movie) and the encoding

used (i.e., MPEG-4).

5.4. Use of Simulator

GloMoSim compilation is assisted by a ‘Makefile’ residing in main directory of the

source hierarchy. After compilation (parsec and generic C-compiler phases), simulation

binary, glomosim, is found in bin directory. Simulation binary is invoked with one pa-

rameter, which is the simulation configuration input file. By default, the configuration

file is named config.in and found in bin folder.

The config.in file homes directives for simulation related settings. They are clas-

sified as:

• General Simulation Parameters (number of nodes, terrain size, node placement

strategy)

• Mobility (model used and its parameters)

• Radio and Propagation Model (frequency, fading power thresholds etc.)

• MAC Protocol

• Routing Protocol

• Transport Protocol

• Application (name of external application configuration file)

• Statistics and GUI options (enabling/disabling specific layer statistics)

An excerpt from a sample config.in file is given in Figure 5.16. The possible external

88

������
�����	
��
��������

���
������
����������	
�����
���������
����������
�������
����
��������������
�	��
��������
��		���
���������������������

���������� !�"��# $%"�!&
��������
��
�������'
��������
��
���
������(
��������
��
���
�������
��������
��������
�	�����	�������

�	���������
������������
�	���������
���������&#"�� $
�����
����	������
�����	���	�������
	����
������ ��"�))!"�'*
	����
�	����������+��
	����
�����������������
	����
	�
�����'!��,"-!�*�
	����
��
����	����
�	���������
������
��������)� !
	�����
�
�����	��

���
�	�������������
�����	�
�	��������%
�����	�
������
�����
����
��	
�	��	�������
	������
�	�������'*� �%

���

�����������
�����������$*'
���
�����������!"
���
�����������!"
������
�����������$*'
����	�
�����������$*'
	������
�����������!"
�����	�
����	
�����������$*'
���
����	
�����������!"
	����
����	
�����������!"
��������
�����������!"

���
�������!"

Figure 5.16. An excerpt from a sample config.in file

files that may be found in a configuration file are node placement file (if each node’s

initial position will be provided externally), mobility trace file (if each node’s mobility

traces will be provided externally), path loss trace file (if path loss data will be provided

externally), and application configuration file.

Application configuration file includes details about the applications that will be

set during the simulation. It homes directives specifying node number, application start

time, duration etc. The format adopted for the applications explained in Section 5.3

is summarized in the following two paragraphs. Further explanations of the format of

the application configuration files can be found as comments in respective application

configuration files.

The directive to offer a service from a given node is ‘SEMA OFFER’ and use of

this directive is as follows:

SEMA OFFER <provider> <start time> <valid until> <serviceXML>

where,

89

<provider>: is the node address of the node on which the service will be an-

nounced

<start time>: is the time at which the service will be announced

<valid for>: is the time interval during which the service will stay available (0

meaning till the end of the simulation)

<serviceXML>: is a valid and well-formed (conforming to Service Schema docu-

ments) service XML instance to be announced, terminated with a

‘|’ (pipe) character

The directive to look for and use a service from a given node is ‘SEMA ASK’ and

use of this directive is as follows:

SEMA ASK <client> <start time> <serviceXML>

where,

<client>: is the node address of the node on which the service is requested

and to be used

<start time>: is the time the service is requested

<serviceXML>: is a valid and well-formed (conforming to Service Schema docu-

ments) service XML instance that is requested to be used, termi-

nated with a ‘|’ (pipe) character

For the both directives (to offer and ask for a service), other application specific

details are given embedded into the XML instance of that specific service. A detailed

application configuration file is provided in Appendix B.

After the simulation execution, layer statistics are written to file glomo.stat per

node basis. Further analysis on the results are obtained by processing this file residing

in bin directory.

90

6. EXPERIMENTS AND RESULTS

In this chapter, we explain our motivation for the realized simulation experiments,

the parameters that have effect on the performance and the ones we populated as

factors. After defining some performance metrics, details of experiments are given and

finally the results are presented.

6.1. Motivation

Our aim in doing experiments is basically to prove the concept of the service

centric approach to be working. If the proof of concept is found acceptable, the exper-

iments will be used as the first design feedback for the choices made on the algorithms

and protocol parameter values. Proposed protocol has many aspects to evaluate and

among those, we try to focus on the ones that we believe to be important.

6.2. Parameters

The parameters that have effect on the outcome of the experiments are classified

into the following two categories as suggested in [80].

6.2.1. System Parameters

System parameters that are listed below have both hardware and software related

items and found to be effective on the performance of the proposed protocol:

1. Available radio bandwidth

2. Operation frequency of the radio equipment

3. Radio power (TX/RX power, sensing thresholds etc.)

4. Antenna gain of the radio equipment

5. Selection of the underlying data link protocol

6. Noise characteristics of the environment (thermal, wireless interference etc.)

91

7. Target terrain structure (dimensions, rural, urban, suburban etc.)

8. Host distribution on the terrain (number, placement etc.)

9. Mobility characteristics of the hosts (behavior, speed etc.)

10. Maximum permitted source route length

11. Maximum permitted XML instance sizes (for hosts and services)

12. Service lookup expanding ring properties (start size, step size, timeout etc.)

13. Service announcement repetition

14. Application retries on service discovery failures

15. Application retransmission facility

16. Availability of services for a given service request

6.2.2. Workload Parameters

Workload parameters are related with the offered load to the proposed system

and listed below:

1. Number of applications offering a service

2. Number of applications asking for a service

3. Number of concurrent sessions taking place on network

4. Types of services (CBR, printing, VoSeMA, videoStream etc.)

5. Service parameters (CBR packet size and inter-departure times, printed file size,

VoSeMA codec type and duration etc.)

6.3. Performance Metrics

This section provides a description of the performance metrics considered in this

study. Some of the listed metrics are for future references and not used in the presen-

tation of the results. Understanding these metrics are vital to correctly evaluate the

results presented in Section 6.5.

The total number of service instances recorded is a metric giving the total number

of entries found in service tables of all nodes, at the end of the simulation duration.

92

This number gives two insights. First one is how successful the announcement relaying

and recording mechanism was in limiting the number of alternatives recorded locally in

service tables. Second is how many route alternatives, on average, a node may see to be

used in optimization of routes in case of route loss. This metric should be understood

as a cost to be paid in bandwidth (announcement packets on the network) and memory

space (recorded entries on the service table).

The total number of link breaks is another metric and gives the number of times

the communication agents were unsuccessful in finding the next hop specified in the

source route generated by routing agents. This metric is useful in evaluating the fresh-

ness of the source routes generated in the network. Every link break is an additional

cost that causes additional packets to be transmitted in the network (either via route

healing or flooding).

The packet delivery ratio (PDR) is a rather frequently used metric, stating the

ratio of the packets that made their ways to destination over all generated packets. It is

an overall performance evaluation metric, evaluating the protocol as a tool to transmit

all generated packets to their respective destinations.

Average number of hops is again a frequently used metric in routing. But for

our protocol, this metric also tells about the performance of the service discovery

algorithm in finding the nearest service possible, since routing is inherently related to

this property.

Number of failed service binding attempts metric summarizes the performance of

the architecture in finding at least one suitable service. However, a service binding

failure can not be only related to the operation of our protocol (i.e., a suitable service

may be physically unreachable because of the current topology).

Service discovery latency gives the performance of the lookup mechanism in terms

of amount of delay incurred. It is measured from the time the application asked for

the service to the time service agent returned a suitable discovered instance.

93

Throughput and average end-to-end delay for successfully completed sessions are

classical performance metrics giving the amount of available bandwidth and suffered

delay for applications.

Number of successfully completed sessions is a metric that may complement PDR,

in the sense that the distribution of packet delivery ratio among sessions is evaluated.

Ratio of broadcast packets to unicast packets is a metric that gives an insight on

the amount of contention generated in the wireless broadcast network by announcement

packets and flooded data packets.

Ratio of control packets to data packets is a classical metric that gives the portion

of the consumed bandwidth to make the protocol work.

6.4. Experiments

Experiments are created with the intention of generating a realistic scenario of

ad hoc networking. For this purpose, the target environment is selected as a campus

field with different characteristic user applications running. The fixed parameters and

populated factors are chosen to reflect an acceptable real target environment.

In experiment design, the most of the parameters of Section 6.2.1 have been

fixed at values as pessimist as possible in order to have worst case results in that

sense. The fixed parameters for the simulations are given in Table 6.1. In the table,

two of the parameters that are listed as fixed are not actually separate parameters but

appears fixed as a result of others. First is the approximate wireless transmission range

and this parameter value is fixed approximately at (a time varying value dependent

on various simulation conditions) 250 meters as a result of fixed transmission power,

reception power threshold, fading and pathloss model. The second such parameter is

the maximum SeMA packet payload size which is actually determined by the underlying

MAC protocol frame size (which is IEEE 802.11 for our discussion), and size of SeMA

packet header (heavily dependent on allowed XML instance sizes).

94

Table 6.1. Fixed parameters of the simulations

Parameter Name Fixed Value

Available radio bandwidth 2 Mb/s

Operation frequency of the radio equipment 2.4 GHz

Radio transmission power 15 dBm

Radio reception sensitivity -81 dBm

Radio antenna gain 0 dBm

Underlying MAC protocol IEEE 802.11

Noise characteristics of the environment Thermal Noise Aware / 290◦
K

Terrain Pathloss Model Two-Ray

Terrain Fading Model Rician with K factor 5

Approximate wireless transmission range 250 meters

Host placement strategy on terrain Variant of Uniform Distribution

Maximum permitted source route length 10 hops

Maximum permitted host XML instance size 50 bytes

Maximum permitted service XML instance size 200 bytes

Maximum SeMA packet payload size 1488 bytes

Service lookup expanding ring start diameter 1 hop

Service lookup expanding ring step diameter 1 hop

Service lookup expanding ring retry limit 3 times

Service lookup expanding ring timeout 300 ms

Application retries on service discovery failures 3 times with 1 sec. backoff

Application retransmission facility None

Simulation time 5 min

In the target campus environment, there are high number of low mobile pedestri-

ans, some bicycle riding mobile users and few low speed vehicles. The distribution of

such mobiles with characteristic speeds are given in Table 6.2 and lead us to the average

mobile user speed used in the base problem, which is 3 m/s. Mobility of the users are

imitated by making use of random waypoint mobility model included in the simulator

(see Section 2.3.1 for details of the model). Pause times of mobiles are selected to be 30

seconds, which resembles the settling of a user upon reaching its intended destination.

During five minutes of simulation time, mobiles find enough time to pause and continue

their movements. The results of random waypoint mobile network are compared with

95

Table 6.2. Distribution of mobile users and their speeds

Mobile Class and Avg. Speed Distribution

Pedestrian (2 m/s) % 75

Bicycle Rider (4 m/s) % 15

Vehicle (10 m/s ∼= 36 km/h) % 10

Chosen Overall Average Speed 3 m/s

no mobility (fixed network) alternative.

The scenarios under consideration take place on rectangle or square shaped ter-

rains where mobile hosts are placed using a variant of uniform placement. The uniform

placement of nodes (i.e., each node placed on a suitable grid intersection in a determin-

istic manner) is modified as follows. Simulation area is divided into a number of square

shaped cells. Except for the 25 host scenario, cells are placed to form a [10 cell∗ n
10

cell]

structure, where n is the number of hosts in the simulation. Within each cell, a node

is placed randomly. Cell dimensions are selected carefully, not to cause a partitioned

network at the beginning, and not to cause a highly connected network. For this rea-

son, the node density, ρ, is defined to be the average number of wireless transmission

neighbors of a given host. Assuming ideal circular transmission shapes, ρ is given as:

ρ =
πr2

a2
(6.1)

where r is the wireless transmission range of the host, and a is the dimension of a cell.

For the base scenario, 50 hosts are placed to a terrain of (1850 m * 925 m) with each

cell size being 185 m. The node density, ρ, is approximately 5.7 for this base scenario.

In order to eliminate the effect of workload increase and only observe the scalability,

the variations on the terrain size is done with keeping the ρ approximately same.

The variation of terrain dimensions for the simulations are illustrated in Figure 6.1

with their cell structures. To avoid a corridor-like simulation area, which may cause

unrealistic moves of mobiles, [10 cell∗ n
10

cell] structure is not used for the 25 host case.

Instead, the terrain is selected to be a square shaped area of (925 m * 925m), keeping

ρ approximately in the same range.

96

�
�
�
�
��

�����

��

�����

���

�����

������

�����

�
�
�
��

��

�����
�
�
�
�
��

�		���
	����

���

�����

���

�����

Figure 6.1. Simulation terrain dimensions and placement cells

Applications that are implemented for simulations may be used in many combi-

nations to introduce workload to the system. There are five classes of services to be

selected with various internal parameters. They are printing, generic CBR, generic

VBR, VoSeMA (voice over SeMA), and video streaming. To ease the factorization of

workload parameters, two application scenarios are designed to be a reasonable mix-

ture of these applications, trying to reflect the real traffic of a campus environment.

These two application scenarios and their parameter details are given in Table 6.3.

For the application scenarios given in Table 6.3, hosts that provide and ask ser-

vices are randomly selected and do not change from one test to another. However,

as the uniform placement strategy places nodes differently for different terrain sizes,

the starting topology for applications change unavoidably. The request times of ser-

vices are again randomly distributed over the simulation duration. Same application

configuration files are used for {50, 100, 150, 200} host simulations. Application con-

97

Table 6.3. Application scenarios used in simulations

Application Parameter Light Application Scenario Heavy Application Scenario

Number of Printers Available 5 identical 10 identical

Number of Hosts Asking 6 hosts (RFC / 6KB) 12 hosts (RFC / 6KB)

Printer Service and 3 hosts (User Manual / 56KB) 6 hosts (User Manual / 56KB)

Printed Document Type 1 host (Book / 152KB) 2 host (Book / 152KB)

appx. 240 SeMA Packets appx. 480 SeMA Packets

a total of 356KB a total of 712KB

Number of VoSeMA calls 3 pairs 6 pairs

(in pairs) 20 seconds each 20 seconds each

G.723.1 codec G.723.1 codec

Bit rate 5.3Kb/s Bit rate 5.3Kb/s

1 host 2 hosts

Number of Video Stream 60 seconds 60 seconds

Sessions MPEG-4 encoded MPEG-4 encoded

Star Wars IV Star Wars IV

Bit rate 54Kb/s (mean) Bit rate 54Kb/s (mean)

figuration files for 25 host network is re-edited to be consistent with node numbering,

since applications were distributed among hosts of base scenario (50 hosts).

In the application configurations, printers are identical in attributes, therefore

any printer requesting application may print to any of the available printers. Voice

and video sessions however, take place between two pre-determined (randomly) hosts

of the ad hoc network. This is realized by using an extra attribute called calee for voice

applications and target for video streaming applications. The values of the attributes

are set to match their remote party host identifiers, so that the client can only bind to

the service on its intended provider.

For the base problem, validity duration for applications are selected to be 100

seconds, which means that the applications are re-announced three times for a simula-

tion duration of five minutes. The input file for light application workload is given in

Appendix B for the base problem.

98

6.5. Results

In this section we present the results of the various simulation runs, classified ac-

cording to the factors whose effects are of interest. The presented results are statistical

averages taken from ten different simulation trials. Most of the results are plotted with

90 per cent confidence intervals (as error bars) that are calculated for the unknown

mean. Note that some of the intervals are smaller than the symbols used to represent

data points, which can be commented as ‘the plotted mean is very close to the unknown

mean’.

6.5.1. Service Announcements Recorded

In Figure 6.2, the total number of service instances that are recorded to local

service tables are given for five different network configurations under light application

workload. The results are presented for both a static host (hosts stay at their initial

places) and mobile host network (random waypoint with 3 m/s average mobile speed).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 25 50 100 150 200

T
ot

al
 N

um
be

r
of

 S
er

vi
ce

 In
st

an
ce

s
R

ec
or

de
d

Number of Nodes

No Mobility
Random Waypoint Mobility

Figure 6.2. Total number of service instances recorded under light application

scenario

99

As the size of the network grows, two factors affect the increase of the number of

total service instances recorded. The first and obvious is the increase of the number

of nodes. As more hosts are added, those new hosts record the announcements they

have heard. The second is related to the number of different alternative paths that a

service announcement may be heard from. As we have more nodes on a larger terrain,

probability of hearing an announcement from a far node increases, which creates more

alternative entries for a constant number of announced services.

For 100, 150, and 200 node networks, the increase in the number of recorded

instances slows down and starts to saturate, because of the entry limit per service

instance, explained in Section 4.4.2.2. This limit is selected to be five in the simulation

runs and puts upper limit on the space used for service table.

It is also clearly seen that mobility, causing nodes to be in different places dur-

ing the simulation, helps nodes to hear more service announcement alternatives, thus

increasing the number of service instances recorded.

Same trends are observed for the heavy application scenario as illustrated in

Figure 6.3. Total number of announcements recorded is higher since heavy application

scenario includes more (literally double of light application scenario) services to be

announced.

6.5.2. Application Oriented Performance

In this section, performance of the protocol is evaluated from the view of printing

applications taking place in heavy application scenario. There are ten printers and

twenty clients try to get printing service from those printers.

In Figure 6.4, average end-to-end delay suffered by the printing service sessions

are presented. As more nodes are added to a larger terrain, suffered average end-to-end

delay increases, since services are fetched from more hop incurring paths. Compared

to the static scenario, end-to-end delay is worse for the mobile scenario, since number

100

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 25 50 100 150 200

T
ot

al
 N

um
be

r
of

 S
er

vi
ce

 In
st

an
ce

s
R

ec
or

de
d

Number of Nodes

No Mobility
Random Waypoint Mobility

Figure 6.3. Total number of recorded service instances under heavy application

scenario

of hops a session is carried over changes as mobiles move. Additionally, route loss and

healing takes extra time, resulting end-to-end delay time increase.

Total number of printing sessions completed intact are given in Figure 6.5. Analy-

sis is done for the heavy application scenario, where twenty printing jobs are submitted

to various printers. For the static network configuration, most of the printing jobs are

completed. Worst case, two or three printing jobs are missed due to either an unsuc-

cessful service discovery (no physically reachable service is found for the topological

layout) or lost packets as a result of a temporal contention (e.g., during an announce-

ment repetition) on the network. However, with the introduction of mobility, some

more printing sessions become incomplete. This is due to the frequent route changes

and possible route losses resulted from mobility of the nodes. For both static and

mobile scenarios, a small network (i.e., 25-node) has advantages because of its small

terrain size in completing sessions. Average number of hops of sessions are low in

smaller network configurations.

101

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 25 50 100 150 200

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
s)

Number of Nodes

No Mobility
Random Waypoint Mobility

Figure 6.4. Average end-to-end delay for printing applications of heavy application

scenario

 5

 10

 15

 20

 25 50 100 150 200

T
ot

al
 N

um
be

r
of

 C
om

pl
et

ed
 P

rin
tin

g
S

es
si

on
s

(o
ut

 o
f 2

0
se

ss
io

ns
)

Number of Nodes

No Mobility
Random Waypoint Mobility

Figure 6.5. Number of completed printing sessions for heavy application scenario

102

Table 6.4. Percentage of services discovered via lookup and average discovery

latencies for heavy application scenario

Number of Percentage of Discovered Average Service

Hops Services via Lookup (per cent) Discovery Latency (s)

25 2 1.09

50 0.7 0.17

100 4 1.07

150 0 0

200 2 0.13

6.5.3. Service Discovery Latency

The amount of time passed between the start of the service fetch process and the

time on which a suitable service instance is returned to the application is defined as

the service discovery latency. The latency for locally discovered services are zero. Rest

of the discoveries are realized via service lookup procedure and their percentage (com-

paring them to locally discovered ones) and latency values are presented in Table 6.4.

The results presented in the table are for 25, 50, 100, 150 and 200 node networks

using random waypoint mobility under heavy application scenario. From all bindings

realized, most of the services are discovered from respective service agents local service

tables, thus introducing no extra delay. Rest of the bindings are realized with the help

of service lookup mechanism, and produced the average delays provided in the table.

This result is expected since no service announcement scope limiting mechanisms

are used in the protocol. Only need for lookup is caused by mobility. If a node has

missed an announcement because of being somewhere out of the transmission range of

others, a lookup is necessary for that node to bind to that missed service. From the

results, it is observed that this has occurred at most 4 per cent of the time.

103

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 3 5 10 20 30

T
ot

al
 N

um
be

r
of

 O
bs

er
ve

d
Li

nk
 B

re
ak

s

Total Number of Announcement Repetitions During Simulation

Light Application Sce.
Heavy Application Sce.

Figure 6.6. Total number of link breaks as services announced more frequently

6.5.4. Effect of Service Announcement Repetitions

For the base problem (50-nodes with random waypoint mobility), effect of the

number of service announcement repetitions during the simulation is inspected for

heavy and light application scenarios. Number of repetitions are given for the all

simulation duration. For example, ten repetitions mean that the services are announced

at seconds 0, 30, 60, 90, 120, 150, 180, 210, 240, 270 during a simulation of five

minutes. From Figure 6.6, importance of the number of times that the services are

re-announced has an important effect on the overall performance of the protocol, in

the sense that service table entries are fresh and has valid source routes. Observed link

breaks (unavailability of the next hop indicated in the source route) in the network

decrease exponentially as services are re-announced more frequently. This behavior is

expected, since sessions make use of fresh entries having routes that are not broken yet

because of mobility.

Figure 6.7 further supports this idea where important improvements on the packet

delivery ratio are observed both for light and heavy application scenarios. The only

104

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 3 5 10 20 30

P
ac

ke
t D

el
iv

er
y

R
at

io

Total Number of Announcement Repetitions During Simulation

Light Application Sce.
Heavy Application Sce.

Figure 6.7. Packet delivery ratio in the network as services announced more

frequently

exception is seen on the heavy application scenario running network with 200-nodes,

when each of the twenty-eight services are announced thirty times during the simula-

tion. The sharp break in PDR increase trend indicates the threshold where the medium

contention generated by the broadcast service announcement packets start affecting the

transmission of unicast data packets. Therefore, depending on the operation point of

the network (in terms of offered load), there exists an upper limit beyond which more

service announcement repetitions are useless and decrease PDR success.

The advantage of announcement repetitions has its price paid in terms of service

announcement traffic generated. The increase in the amount of announcement traffic

can be observed from the total number of instances recorded at hosts. As seen from

Figure 6.8, number of recorded service instances increase almost linearly with number

of service announcement repetitions. This situation is worse for the heavy application

scenario, requiring more announcements to be relayed in the network.

105

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 1 3 5 10 20 30

T
ot

al
 N

um
be

r
of

 S
er

vi
ce

 In
st

an
ce

s
R

ec
or

de
d

Total Number of Announcement Repetitions During Simulation

Light Application Sce.
Heavy Application Sce.

Figure 6.8. Total number of service instances recorded as services announced more

frequently

6.5.5. Effect of Average Mobile Speed

In this subsection, effect of average mobile speed to the network performance is

evaluated. The analysis is made for the base problem (50-nodes with random waypoint

mobility) and average speed of mobiles are increased to be 4, 5, 6 and 7 m/s. Results

are presented both for light and heavy application scenarios.

It is observed from Figure 6.9 that increasing average mobile speed up to 5 m/s

helps mobiles to converge to the alternative routes faster and the new selected route

works some time before it is broken again. For speeds of 5 m/s and higher, nodes move

faster and routes get invalid faster than the newly switched route could improve the

packet routing performance. Therefore the improvement trend on link breaks starts

to disappear for mobiles of speeds 5 m/s or greater. The terrain properties are very

important when evaluating the results of mobility related results since node’s behaviors

on terrain boundaries gain more importance as mobile speeds increase.

106

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 3 4 5 6 7

T
ot

al
 N

um
be

r
of

 L
in

k
B

re
ak

s

Avearage Speed of Mobiles (m/s)

Light Application Sce.
Heavy Application Sce.

Figure 6.9. Total number of link breaks as average mobile speed changes

As nodes move faster, number of recorded service announcement instances de-

crease constantly (both for heavy and light application scenarios) as seen from Fig-

ure 6.10. This behavior can be related to two reasons. First, the probability that a

node may receive an announcement from all different possible paths decrease because

nodes change places faster. Second reason is related to the underlying radio and propa-

gation model. Packet error rates increase as nodes move faster. Therefore, comparably

more announcements are lost on the way as node speeds are increased.

6.5.6. Routing Agent Performance

In order to come up with a comparable evaluation of performance of the routing

mechanism, a frequently used CBR performance evaluation scenario is adapted for our

protocol. For our case, the configuration is similar to the experiments defined in [81].

Presented results are for a 100-host network with 40 CBR sessions (between 80 hosts

of the network). In each session, CBR client node sends another 512 byte item at every

other second to its remote party. In order to avoid unnecessary medium contentions,

packet transmission periods of those 40 sessions are adjusted to be one milliseconds

107

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 3 4 5 6 7

T
ot

al
 N

um
be

r
of

 S
er

vi
ce

 A
nn

ou
nc

em
en

ts
 R

ec
or

de
d

Avearage Speed of Mobiles (m/s)

Light Application Sce.
Heavy Application Sce.

Figure 6.10. Total number of service instances recorded as average mobile speed

changes

away from each other.

Results are presented in Table 6.5 for the classical Packet Delivery Ratio (PDR)

metric of all 10 runs. The average is also given. It is obvious that DSR has much

better packet delivery capability in this configuration. There are a couple of reasons

for this result.

First and major one is because of the simplistic approach of routing defined

in SeMA (See Section 4.4.3). SeMA routing agent does not take further corrective

actions to remember the route loss of packets and tries whatever healing it has to

offer for each and every other packet on the stream. However, for the route loss,

DSR tries a new route discovery to facilitate new packets with fresh and valid source

routes. Currently, the only way to achieve this is to increase the number of service

announcement repetitions, whose results are analyzed in Section 6.5.4. Another reason

for the lost in packets in the scenario using SeMA is the switching to flooding. As routes

start to be out of date, nodes start to try alternatives, as explained in Section 4.4.3.2,

108

Table 6.5. Packet delivery ratios resulted from DSR and SeMA routing

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

SeMA 0.169 0.179 0.144 0.165 0.127 0.109 0.145 0.186 0.110 0.208

DSR 0.736 0.767 0.805 0.809 0.754 0.793 0.767 0.763 0.821 0.803

Average for SeMA 0.154

Average for DSR 0.781

(for one more time in the simulations), and switch to flooding if not successful. Since

the 80 per cent of the nodes are involved in sessions, the flooding occurring sessions

affect some of the normally routed session packets using that part of the network by

creating contentions. In this sense, IEEE 802.11 broadcast traffic is more likely to affect

other stations than unicast traffic. This is because broadcast traffic does not make use

of RTS/CTS mechanism to prevent further collisions caused to hidden terminals.

109

7. CONCLUSIONS AND FUTURE WORK

In this thesis, a cross layer ad hoc network protocol is proposed to discover, bind

to, and utilize services available on the network. Issues of service definition, service dis-

covery, multihop routing and session management are addressed in this simple service

aware protocol.

To evaluate the performance of the proposed architecture, a frequently used wire-

less network simulation software, GloMoSim is extended to include the designed algo-

rithms. To construct an operating environment for the applications using this protocol,

a realistic campus scenario with applications are designed and implemented to be used

in simulations. These applications include printing, voice and video streaming services

beside generic CBR and VBR applications.

Although offered protocol is not specifically intended to be designed to satisfy

networking requests of classical IP stack users, the simulation environment and appli-

cations therein reflect such a scenario. This approach is chosen to show the generic

applicability of the protocol in terms of service discovery and routing. Results show

this applicability is possible with sacrificing some performance in packet routing. Us-

ing proposed protocol, applications are found to be able to discover and bind to valid

services even in networks of a few hundred users. Use and tuning of the algorithms

for some other alternative environments are investigated. A sensor network architec-

ture backbone, for example, is offered in [82] making use of this proposed protocol in

providing access to environmental monitoring services.

Using simulation results as the proof of concepts, some mechanisms and protocol

parameters are to be revisited, and augmented if possible. Routing, for example,

needs some extra care to better perform with route loss characteristics in mind. The

routing performance may be enhanced to include mechanisms that will prevent frequent

flooding of messages and make hosts remember corrective actions taken for recent route

losses. This is important since routing performance has a significant effect on the overall

110

classical performance metrics like packet delivery ratio or throughput.

Efficient representation of XML instances for both host and service attributes

is another issue to be carefully considered. Having well-compressed and compacted

instances affects the transport performance of the protocol, since host and service

instances are frequently used in protocol packets. This effect will increase its strength

if more feature aware mechanisms will be introduced into the algorithms in the future.

Having a service and host attribute aware network layer offers unlimited capabil-

ities for task specific networks. Because of time constraints, a feature aware network

layer operation has not been implemented, but all the framework that will ease the job

of anyone considering such an addition is provided. This addition may include popular

approaches to ad hoc networking like power efficient algorithms, QoS aware routing or

location based services.

The proposed protocol does not imply any direct compatibility for currently im-

plemented TCP/IP stack using applications. The applications of ad hoc network that

will use our protocol have to make use of the new primitives supplied to access and use

the services. Access to an IP (or another) backbone network may be defined and of-

fered as a service on the proposed network, since the routing itself is a service provided

by network layers of protocol stacks. Such gateway services may well be provided by

fixed hosts of ad hoc networks with a connection to the wired infrastructure.

111

APPENDIX A: SAMPLE HOST XML SCHEMA

DOCUMENT

In this Appendix, a sample host XML schema document (XSD) is presented,
which is used to validate a given host XML instance.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="http://ics.yeditepe.edu.tr/tnl/2003/01/MANET"

xmlns="http://ics.yeditepe.edu.tr/tnl/2003/01/MANET"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified" version="0.1">

<xsd:element name="service" type="serviceType">

<xsd:annotation>

<xsd:documentation> The topmost element to define a service </xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:complexType name="serviceType">

<xsd:annotation>

<xsd:documentation>The type definition to define a service.</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="keyword" maxOccurs="unbounded">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="attribute" type="xsd:string" use="required"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>

</xsd:schema>

112

APPENDIX B: SAMPLE APPLICATION

CONFIGURATION FILE

In this Appendix, a sample application configuration file is presented. This file
represents the light application scenario of the base problem that is used in the exper-
iments of performance evalustion. Contents of the file are processed by the GloMoSim
simulation software.

LIGHT APPLICATION SCENARIO

SEMA OFFER 3 1MS 100S <s n="printer"><k a="location">Engineering</k><k a="papersize">A4</k>

<k a="postscript">yes</k><k a="maxResolution">600*600</k></s>|

SEMA OFFER 15 2MS 100S <s n="printer"><k a="location">Engineering</k><k a="papersize">A4</k>

<k a="postscript">yes</k><k a="maxResolution">600*600</k></s>|

SEMA OFFER 16 3MS 100S <s n="printer"><k a="location">Engineering</k><k a="papersize">A4</k>

<k a="postscript">yes</k><k a="maxResolution">600*600</k></s>|

SEMA OFFER 33 4MS 100S <s n="printer"><k a="location">Engineering</k><k a="papersize">A4</k>

<k a="postscript">yes</k><k a="maxResolution">600*600</k></s>|

SEMA OFFER 47 5MS 100S <s n="printer"><k a="location">Engineering</k><k a="papersize">A4</k>

<k a="postscript">yes</k><k a="maxResolution">600*600</k></s>|

SEMA OFFER 3 100001MS 200S <s n="printer"><k a="location">Engineering</k><k a="papersize">A4</k>

<k a="postscript">yes</k><k a="maxResolution">600*600</k></s>|

SEMA OFFER 15 100002MS 200S <s n="printer"><k a="location">Engineering</k><k a="papersize">A4</k>

<k a="postscript">yes</k><k a="maxResolution">600*600</k></s>|

SEMA OFFER 16 100003MS 200S <s n="printer"><k a="location">Engineering</k><k a="papersize">A4</k>

<k a="postscript">yes</k><k a="maxResolution">600*600</k></s>|

SEMA OFFER 33 100004MS 200S <s n="printer"><k a="location">Engineering</k><k a="papersize">A4</k>

<k a="postscript">yes</k><k a="maxResolution">600*600</k></s>|

SEMA OFFER 47 100005MS 200S <s n="printer"><k a="location">Engineering</k><k a="papersize">A4</k>

<k a="postscript">yes</k><k a="maxResolution">600*600</k></s>|

SEMA OFFER 3 203001MS 0S <s n="printer"><k a="location">Engineering</k><k a="papersize">A4</k>

<k a="postscript">yes</k><k a="maxResolution">600*600</k></s>|

SEMA OFFER 15 203002MS 0S <s n="printer"><k a="location">Engineering</k><k a="papersize">A4</k>

<k a="postscript">yes</k><k a="maxResolution">600*600</k></s>|

SEMA OFFER 16 200003MS 0S <s n="printer"><k a="location">Engineering</k><k a="papersize">A4</k>

<k a="postscript">yes</k><k a="maxResolution">600*600</k></s>|

SEMA OFFER 33 200004MS 0S <s n="printer"><k a="location">Engineering</k><k a="papersize">A4</k>

<k a="postscript">yes</k><k a="maxResolution">600*600</k></s>|

SEMA OFFER 47 200005MS 0S <s n="printer"><k a="location">Engineering</k><k a="papersize">A4</k>

<k a="postscript">yes</k><k a="maxResolution">600*600</k></s>|

SEMA ASK 6 188S <s n="printer"><k a="filename">rfc.txt</k><k a="papersize">A4</k>

113

<k a="postscript">yes</k></s>|

SEMA ASK 8 2S <s n="printer"><k a="filename">user-manual.pdf</k>

<k a="papersize">A4</k><k a="postscript">yes</k></s>|

SEMA ASK 9 138S <s n="printer"><k a="filename">rfc.txt</k>

<k a="papersize">A4</k><k a="postscript">yes</k></s>|

SEMA ASK 11 108S <s n="printer"><k a="filename">rfc.txt</k>

<k a="papersize">A4</k><k a="postscript">yes</k></s>|

SEMA ASK 13 294S <s n="printer"><k a="filename">rfc.txt</k>

<k a="papersize">A4</k><k a="postscript">yes</k></s>|

SEMA ASK 20 57S <s n="printer"><k a="filename">rfc.txt</k>

<k a="papersize">A4</k><k a="postscript">yes</k></s>|

SEMA ASK 30 32S <s n="printer"><k a="filename">rfc.txt</k>

<k a="papersize">A4</k><k a="postscript">yes</k></s>|

SEMA ASK 39 81S <s n="printer"><k a="filename">user-manual.pdf</k>

<k a="papersize">A4</k><k a="postscript">yes</k></s>|

SEMA ASK 37 190S <s n="printer"><k a="filename">user-manual.pdf</k>

<k a="papersize">A4</k><k a="postscript">yes</k></s>|

SEMA ASK 45 154S <s n="printer"><k a="filename">book-small.pdf</k>

<k a="papersize">A4</k><k a="postscript">yes</k></s>|

SEMA OFFER 1 6MS 100S <s n="VoSeMA"><k a="calee">1</k></s>|

SEMA OFFER 1 100006MS 200S <s n="VoSeMA"><k a="calee">1</k></s>|

SEMA OFFER 1 200006MS 0S <s n="VoSeMA"><k a="calee">1</k></s>|

SEMA ASK 3 40S <s n="VoSeMA"><k a="codec">G.723.1</k>

<k a="duration">20S</k><k a="calee">1</k></s>|

SEMA OFFER 19 7MS 100S <s n="VoSeMA"><k a="calee">19</k></s>|

SEMA OFFER 19 100007MS 200S <s n="VoSeMA"><k a="calee">19</k></s>|

SEMA OFFER 19 200007MS 0S <s n="VoSeMA"><k a="calee">19</k></s>|

SEMA ASK 44 110S <s n="VoSeMA"><k a="codec">G.723.1</k><k a="duration">20S</k>

<k a="calee">19</k></s>|

SEMA OFFER 49 8MS 100S <s n="VoSeMA"><k a="calee">49</k></s>|

SEMA OFFER 49 100008MS 200S <s n="VoSeMA"><k a="calee">49</k></s>|

SEMA OFFER 49 200008MS 0S <s n="VoSeMA"><k a="calee">49</k></s>|

SEMA ASK 17 250S <s n="VoSeMA"><k a="codec">G.723.1</k><k a="duration">20S</k>

<k a="calee">49</k></s>|

SEMA OFFER 31 9MS 100S <s n="videoStream"><k a="target">31</k><k a="encoder">MPEG-4</k></s>|

SEMA OFFER 31 100009MS 200S <s n="videoStream"><k a="target">31</k><k a="encoder">MPEG-4</k></s>|

SEMA OFFER 31 200009MS 0S <s n="videoStream"><k a="target">31</k><k a="encoder">MPEG-4</k></s>|

SEMA ASK 27 15S <s n="videoStream"><k a="duration">60S</k><k a="media">StarWarsIV-lowres</k>

<k a="target">31</k><k a="encoder">MPEG-4</k></s>|

114

REFERENCES

1. Akyıldız, I. F., W. Su, Y. Sankarasubramaniam and E. Çayırcı, “Wireless Sensor

Networks: A Survey”, Computer Networks (Elsevier), Vol. 38, No. 4, pp. 393–422,

March 2002.

2. Weiser, M., “Some Computer Science Issues in Ubiquitous Computing”, Commu-

nications of the ACM , Vol. 36, No. 7, pp. 75–85, July 1993.

3. Satyanarayanan, M., “Pervasive Computing: Vision and Challenges”, IEEE Per-

sonal Communications, pp. 10–17, August 2001.

4. Tanenbaum, A. S., Computer Networks, Prentice-Hall Inc., New Jersey, USA, 1996.

5. IETF Mobile Ad Hoc Networks (MANET) Official Charter , http://

www.ietf.org/html.charters/manet-charter.html (Last Checked on Feb-

ruary 26th, 2003).

6. Goldsmith, A. J. and S. B. Wicker, “Design Challenges for Energy-Constrained

Ad Hoc Wireless Networks”, IEEE Wireless Communications, Vol. 9, No. 4, pp.

8–25, August 2002.

7. Longman Dictionary of Contemporary English (Second Edition), Longman Group

UK Limited, Essex, England, 1992.

8. Perkins, C. E., Ad Hoc Networking , Addison Wesley Professional, Boston, USA,

2000.

9. Perkins, C., Mobile Ad Hoc Networking Terminology , Internet draft (work

in progress), IETF, 1998, http://www.iprg.nokia.com/∼charliep/txt/

manet/term.txt (Last Checked on February 26th, 2003).

10. Rappaport, T. S., Wireless Communications: Principles and Practice (Second Edi-

115

tion), Prentice-Hall Inc., New Jersey, USA, 2001.

11. Kleinrock, L. and F. A. Tobagi, “Packet Switching in Radio Channels: Part I –

Carrier Sense Multiple-Access Modes and Their Throughput-Delay Characteris-

tics”, IEEE Transactions on Communications, Vol. 23, No. 12, pp. 1400–1416,

December 1975.

12. Haas, Z. J., J. Deng, B. Liang, P. Papadimitratos and S. Sajama, “Wireless Ad

Hoc Networks”, J. Proakis (Editor), Encyclopedia of Telecommunications, John

Wiley and Sons Inc., 2002.

13. Karn, P., “MACA: A New Channel Access Method for Packet Radio”, Proceedings

of ARRL/CRRL Amateur Radio 9th Computer Networking Conference, pp. 134–

140, New York, USA, April 1990.

14. Bharghavan, V., A. Demers, S. Shenker and L. Zhang, “MACAW: A Media Ac-

cess Protocol for Wireless LANs”, Proceedings of the SIGCOMM’94 , pp. 212–225,

London, UK, August 1994.

15. Fullmer, C. L. and J. J. Garcia-Luna-Aceves, “Floor Acquisition Multiple Access

(FAMA) for Packet-Radio Networks”, Proceedings of the SIGCOMM’95 , pp. 262–

273, Cambridge, USA, October 1995.

16. Radio Equipment and Systems (RES); High Performance Radio Local Area Net-

work (HIPERLAN) Type 1, Functional Specification, Standard Document ETS 300

652, European Telecommunications Standards Institute, Sophia Antipolis, France,

October 1996.

17. IEEE/IEC Std 802.11, Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications, Standard document, The Institute of Electrical and

Electronics Engineers, New York, USA, August 1999.

18. Broadband Radio Access Networks (BRAN), HIPERLAN Type 2, System

116

Overview , Standard Document TR 101 683, European Telecommunications Stan-

dards Institute, Sophia Antipolis, France, August 2000.

19. Negus, K. J., J. Waters, J. Tourrilhes, C. Romans, J. Lansford and S. Hui,

“HomeRF and SWAP: Wireless Networking for the Connected Home”, ACM SIG-

MOBILE Mobile Computing and Communications Review , Vol. 2, No. 4, pp. 28–37,

October 1998.

20. Bluetooth Special Interest Group: Specification of the Bluetooth System, Version

1.1 , February 2001, http://www.bluetooth.com (Last Checked on February

26th, 2003).

21. Liu, J., D. M. Nicol, L. F. Perrone and M. Liljenstam, “Towards High Perfor-

mance Modeling of the 802.11 Wireless Protocol”, Proceedings of the 33rd Winter

Simulation Conference WSC’01 , pp. 1315–1320, Arlington, USA, December 2001.

22. Camp, T., J. Boleng and V. Davies, “A Survey of Mobility Models for Ad Hoc Net-

work Research”, Wireless Communications & Mobile Computing (WCMC), Special

Issue on Mobile Ad Hoc Networking: Research, Trends and Applications, Vol. 2,

No. 5, pp. 483–502, 2002.

23. Johnson, D. B. and D. A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless

Networks”, T. Imielinski and H. Korth (Editors), Mobile Computing , Vol. 353,

chap. 5, pp. 153–181, Kluwer Academic Publishers, 1996.

24. Royer, E. M., P. M. Melliar-Smith and L. E. Moser, “An Analysis of the Optimum

Node Density for Ad Hoc Mobile Networks”, Proceedings of the IEEE International

Conference on Communications ICC’01 , Vol. 3, pp. 857–861, Helsinki, Finland,

June 2001.

25. Haas, Z. J., “A New Routing Protocol for Reconfigurable Wireless Networks”,

Proceedings of the IEEE International Conference on Universal Personal Commu-

nications ICUPC’97 , pp. 562–565, San Diego, USA, October 1997.

117

26. Bettstetter, C., “Smooth is Better than Sharp: A Random Mobility Model for

Simulation of Wireless Networks”, Proceedings of ACM International Workshop on

Modeling, Analysis, and Simulation of Wireless and Mobile Systems MSWiM’01 ,

pp. 19–27, Rome, Italy, July 2001.

27. Liang, B. and Z. J. Haas, “Predictive Distance-Based Mobility Management for

PCS Networks”, Proceedings of Eighteenth Annual Joint Conference of the IEEE

Computer and Communications INFOCOM’99 , pp. 1377–1384, New York, USA,

March 1999.

28. Tuğcu, T. and C. Ersoy, “How A New Realistic Mobility Model Can Effect the

Relative Performance of a Mobile Networking Scheme”, To appear in Wireless

Communications & Mobile Computing Journal, Wiley Publishers.

29. Xie, H., S. Tabbane and D. Goodman, “Dynamic Location Area Management and

Performance Analysis”, Proceedings of 43rd IEEE Vehicular Technology Conference

VTC’93 , pp. 536–539, Secaucus, USA, May 1993.

30. Lopez, M. S., “Mobility Models Page”, http://www.disca.upv.es/misan/

mobmodel.htm (Last Checked on February 26th, 2003).

31. Hong, X., M. Gerla, G. Pei and C. C. Chiang, “A Group Mobility Model for Ad

Hoc Wireless Networks”, Proceedings of ACM/IEEE International Workshop on

Modeling, Analysis, and Simulation of Wireless and Mobile Systems MSWiM’99 ,

pp. 53–60, Seattle, USA, August 1999.

32. Penttinen, A., “Research On Ad Hoc Networking: Current Activity And Fu-

ture Directions”, http://citeseer.nj.nec.com/533517.html (Last Checked

on February 26th, 2003).

33. Royer, E. M. and C. K. Toh, “A Review of Current Routing Protocols for Ad-Hoc

Mobile Wireless Networks”, IEEE Personal Communications, pp. 46–55, April

1999.

118

34. Bertsekas, D. and R. Gallager, Data Networks (Second Edition), Prentice-Hall Inc.,

New Jersey, USA, 1992.

35. Cheng, C., R. Riley, S. P. R. Kumar and J. J. Garcia-Luna-Aceves, “A Loop-Free

Bellman-Ford Routing Protocol Without Bouncing Effect”, Proceedings of ACM

SIGCOMM’89 , pp. 224–237, Austin, USA, September 1989.

36. Garcia-Luna-Aceves, J. J., “Loop-Free Routing Using Diffusing Computations”,

IEEE/ACM Transactions on Networking , Vol. 1, No. 1, pp. 130–141, February

1993.

37. Perkins, C. and P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance-

Vector Routing (DSDV) for Mobile Computers”, Proceedings of ACM SIG-

COMM’94 , pp. 234–244, London, UK, August 1994.

38. Chen, T. W. and M. Gerla, “Global State Routing: A New Routing Scheme for

Ad-hoc Wireless Networks”, Proceedings of the IEEE International Conference on

Communications ICC’98 , pp. 171–175, Atlanta, USA, June 1998.

39. Pei, G., M. Gerla and T.-W. Chen, “Fisheye State Routing: A Routing Scheme

for Ad Hoc Wireless Networks”, Proceedings of the IEEE International Conference

on Communications ICC’00 , pp. 70–74, New Orleans, USA, June 2000.

40. Iwata, A., C. C. Chiang, G. Pei, M. Gerla and T.-W. Chen, “Scalable Routing

Strategies for Ad Hoc Wireless Networks”, IEEE Journal on Selected Areas in

Communications, Special Issue on Ad-Hoc Networks, Vol. 17, No. 8, pp. 1369–

1379, August 1999.

41. Chiang, C. C., H. K. Wu, W. Liu and M. Gerla, “Routing in Clustered Multihop,

Mobile Wireless Networks with Fading Channel”, Proceedings of IEEE Singapore

International Conference on Networks SICON’97 , pp. 197–211, Singapore, April

1997.

119

42. Clausen, T., P. Jacquet, A. Laouiti, P. Minet, P. Muhlethaler, A. Qayyum

and L. Viennot, Optimized Link State Routing Protocol , Internet draft

(work in progress), IETF, December 2002, http://www.ietf.org/

internet-drafts/draft-ietf-manet-olsr-07.txt (Last Checked on Feb-

ruary 26th, 2003).

43. Joa-Ng, M. and I. T. Lu, “A Peer-to-Peer Zone-Based Two-Level Link State Rout-

ing for Mobile Ad Hoc Networks”, IEEE Journal on Selected Areas in Communi-

cations, Special Issue on Ad-Hoc Networks, Vol. 17, No. 8, pp. 1415–1425, August

1999.

44. Sinha, P., R. Sivakumar and V. Bharghavan, “CEDAR: A Core-Extraction Dis-

tributed Ad Hoc Routing Algorithm”, Proceedings of IEEE Conference on Com-

puter Communications INFOCOM’99 , pp. 202–209, New York, USA, March 1999.

45. Murthy, S. and J. J. Garcia-Luna-Aceves, “An Efficient Routing Protocol for Wire-

less Networks”, ACM Mobile Networks and Applications Journal, Special Issue on

Routing in Mobile Communication Networks, Vol. 1, No. 2, pp. 183–197, October

1996.

46. Perkins, C. E., E. M. Belding-Royer and S. R. Das, Ad Hoc On-Demand Distance

Vector (AODV) Routing , Internet draft (work in progress), IETF, February 2003,

http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-13.txt

(Last Checked on February 26th, 2003).

47. Johnson, D. B., D. A. Maltz, Y. C. Hu and J. G. Jetcheva,

The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks

(DSR), Internet draft (work in progress), IETF, February 2002,

http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-07.txt

(Last Checked on February 26th, 2003).

48. Park, V. D. and M. S. Corson, “A Highly Adaptive Distributed Routing Algo-

rithm for Mobile Wireless Networks”, Proceedings of IEEE Conference on Com-

120

puter Communications INFOCOM’97 , pp. 1405–1413, Kobe, Japan, April 1997.

49. Toh, C. K., “Associativity-Based Routing For Ad Hoc Mobile Networks”, Wireless

Personal Communications Journal, Special Issue on Mobile Networking and Com-

puting Systems, Kluwer Academic Publishers, Vol. 4, No. 2, pp. 103–139, March

1997.

50. Dube, R., C. Rais, K. Wang and S. Tripathi, “Signal Stability Based Adaptive

Routing for Ad-Hoc Mobile Networks”, IEEE Personal Communications, Vol. 4,

No. 1, pp. 36–45, February 1997.

51. Ko, Y.-B. and N. Vaidya, “Location-Aided Routing (LAR) in Mobile Ad Hoc

Networks”, Proceedings of the Fourth ACM/IEEE International Conference on

Mobile Computing and Networking MobiCom’98 , pp. 66–75, Dallas, USA, October

1998.

52. Haas, Z. J., J. Y. Halpern and L. Li, “Gossip-Based Ad Hoc Routing”, Proceedings

of IEEE Conference on Computer Communications INFOCOM’02 , Vol. 3, pp.

1707–1716, New York, USA, June 2002.

53. Haas, Z. J., M. R. Pearlman and P. Samar, The Zone Routing Protocol (ZRP)

for Ad Hoc Networks, Internet draft (work in progress), IETF, July 2002,

http://www.ietf.org/internet-drafts/draft-ietf-manet-zone-zrp-04.txt

(Last Checked on February 26th, 2003).

54. Nikaein, N., H. Labiod and C. Bonnet, “DDR- Distributed Dynamic Routing Algo-

rithm for Mobile Ad Hoc Networks”, Proceedings of the First Annual Workshop on

Mobile Ad Hoc Networking & Computing MobiHOC’00 , pp. 19–27, Boston, USA,

August 2000.

55. Guttman, E., C. Perkins, J. Veizades and M. Day, Service Location Protocol, Ver-

sion 2 , RFC 2608, IETF, 1999.

121

56. Edwards, W. K., Core Jini (Second Edition), Prentice-Hall Inc., New Jersey, USA,

2000.

57. Sun Microsystems Inc., http://www.sun.com (Last Checked on February

26th, 2003).

58. Salutation Consortium, http://www.salutation.org (Last Checked on Feb-

ruary 26th, 2003).

59. Universal Plug and Play Forum, http://www.upnp.org (Last Checked on Feb-

ruary 26th, 2003).

60. Eustice, K. F., T. J. Lehman, A. Morales, M. C. Munson, S. Edlund and M. Guillen,

“A Universal Information Appliance”, IBM Systems Journal , Vol. 38, No. 4, pp.

575–602, 1999.

61. Bluetooth Specification Part E. Service Discovery Protocol (SDP), November 1999,

http://www.bluetooth.com (Last Checked on February 26th, 2003).

62. Czerwinski, S., B. Y. Zhao, T. Hodes, A. Joseph and R. Katz, “An Architecture for

a Secure Service Discovery Service”, Proceedings of the 5th ACM/IEEE Interna-

tional Conference on Mobile Computing and Networking MobiCOM’99 , pp. 24–35,

Seattle, USA, August 1999.

63. Adjie-Winoto, W., E. Schwartz, H. Balakrishnan and J. Lilley, “The Design and

Implementation of an Intentional Naming System”, Symposium on Operating Sys-

tems Principles, pp. 186–201, Kiawah Island, USA, December 1999.

64. Baydere, Ş. and M. A. Ergin, “An Architecture for Service Access in Mobile Ad

Hoc Networks”, Proceeding of the IASTED Wireless and Optical Communications,

pp. 392–397, Banff, Canada, July 2002.

65. Baydere, Ş. and M. A. Ergin, “A Model for Dynamic Service Discovery in Wireless

Ad Hoc Networks”, Proceeding of the Sixth Symposium on Computer Networks,

122

pp. 120–128, Gazimagusa, KKTC, June 2001.

66. Bray, T., J. Paoli, C. M. Sperberg-McQueen and E. Maler, Extensible Markup

Language (XML) 1.0 (Second Edition), W3C recommendation, W3C, Octo-

ber 2000, http://www.w3.org/TR/2000/REC-xml-20001006 (Last Checked on

February 26th, 2003).

67. Fallside, D. C., XML Schema Part 0: Primer , W3C recommendation,

W3C, May 2001, http://www.w3.org/TR/2001/REC-xmlschema-0-20010502

(Last Checked on February 26th, 2003).

68. Bajaj, L., M. Takai, R. Ahuja, R. Bagrodia and M. Gerla, GloMoSim: A Scalable

Network Simulation Environment , Tech. Rep. 990027, UCLA CSD, May 1999.

69. Bagrodia, R., R. Meyer, M. Takai, Y. an Chen, X. Zeng, J. Martin and H. Y.

Song, “PARSEC: A Parallel Simulation Environment for Complex Systems”, IEEE

Computer , Vol. 31, No. 10, pp. 77–85, October 1998.

70. QualNet from Scalable Network Technologies Inc., http://www.qualnet.com

(Last Checked on February 26th, 2003).

71. OPNET Modeler from OPNET Technologies Inc., http://www.opnet.com (Last

Checked on February 26th, 2003).

72. The Network Simulator (ns-2), http://www.isi.edu/nsnam/ns (Last Checked

on February 26th, 2003).

73. Deutsch, P., DEFLATE Compressed Data Format Specification, Version 1.3 , RFC

1951, IETF, May 1996.

74. Liefke, H. and D. Suciu, XMill: An Efficient Compressor for XML Data, Tech.

Rep. MS-CIS-99-26, University of Pennsylvania, 1999.

75. Sundaresan, N. and R. Moussa, “Algorithms and Programming Models for Efficient

123

Representation of XML for Internet Applications”, Computer Networks (Elsevier),

Vol. 39, No. 5, pp. 681–697, August 2002.

76. The Expat XML Parser , http://expat.sourceforge.net (Last Checked on

February 26th, 2003).

77. Schulz, T., Voice Over IP , White paper, Eicon Technology Corporation, Febru-

ary 2000, http://www.eicon.com/disvVoIPpri/whtpap4.htm (Last Checked

on February 26th, 2003).

78. Voice Over IP - Per Call Bandwidth Consumption, Tech Note 7934, Cisco Systems

Inc., December 2002.

79. Fitzek, F. H. and M. Reisslein, MPEG-4 and H.263 Video Traces for Network

Performance Evaluation, Tech. Rep. TKN-00-06, Technical University of Berlin,

Telecommunication Network Group, October 2000.

80. Jain, R., The Art of Computer Systems Performance Analysis, John Wiley and

Sons Inc., New York, USA, 1991.

81. Das, S. R., C. E. Perkins and E. E. Royer, “Performance Comparison of Two On-

demand Routing Protocols for Ad Hoc Networks”, Proceedings of IEEE Conference

on Computer Communications INFOCOM’00 , pp. 3–12, Tel Aviv, Israel, March

2000.

82. Baydere, Ş., M. A. Ergin and Ö. Durmaz, “Query Driven Sensor Networks for

Environmental Monitoring Applications”, Submitted to the Computer Networks

(Elsevier), Special Issue on Wireless Sensor Networks.

